Aprendizaje por Refuerzo aplicado a la resolución de problemas no triviales
- Autores
- Errecalde, Marcelo Luis; Muchut, Alfredo; Aguirre, Guillermo; Montoya, Cecilia Inés
- Año de publicación
- 2000
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- El Aprendizaje por Refuerzo (en inglés Reinforcement Learning y de ahora en más AR) ataca el problema de aprender a controlar agentes autónomos, mediante interacciones por prueba y error con un ambiente dinámico, el cual le provee señales de refuerzo por cada acción que realiza. Si los objetivos del agente están definidos por la señal de refuerzo inmediata, la tarea del agente se reduce a aprender una estrategia de control (o política) que permita maximizar la recompensa acumulada a lo largo del tiempo (ver [14] para una formalización de esta tarea) Si bien en sus orígenes el AR sirvió como una herramienta teórica limitada a problemas con pequeños espacios de estados, en la actualidad sus aplicaciones han alcanzado áreas de considerable complejidad tales como robótica, manufacturación industrial, problemas de búsqueda combinatorial, etc. La aplicación del AR a problemas del mundo real, trajo aparejado la necesidad de adaptar las técnicas existentes en el área para manejar características complejas propias de este tipo de ambientes (ambientes estocásticos no estacionarios con grandes espacios de estados y/o acciones). En esta presentación, describimos el trabajo realizado por nuestro grupo de investigación en la aplicación del AR a problemas no triviales del mundo real. Para ello, describimos en las secciones 2 a 4, los 3 factores principales que a nuestro criterio deben ser tenidos en cuenta al trabajar con AR en este tipo de ambientes: balance entre exploración y explotación, aceleración del proceso de aprendizaje y generalización. La sección 5 por su parte, describe cuales son los avances y resultados que hemos logrado en relación a estos 3 ítems, y una breve descripción del plan de trabajo futuro
Eje: Sistemas inteligentes. Metaheurísticas.
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Aprendizaje por Refuerzo
Learning
resolución de problemas no triviales
ARTIFICIAL INTELLIGENCE
Heuristic methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22106
Ver los metadatos del registro completo
id |
SEDICI_ea3d5732d0805e202a6492a48cb88c64 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22106 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Aprendizaje por Refuerzo aplicado a la resolución de problemas no trivialesErrecalde, Marcelo LuisMuchut, AlfredoAguirre, GuillermoMontoya, Cecilia InésCiencias InformáticasAprendizaje por RefuerzoLearningresolución de problemas no trivialesARTIFICIAL INTELLIGENCEHeuristic methodsEl Aprendizaje por Refuerzo (en inglés Reinforcement Learning y de ahora en más AR) ataca el problema de aprender a controlar agentes autónomos, mediante interacciones por prueba y error con un ambiente dinámico, el cual le provee señales de refuerzo por cada acción que realiza. Si los objetivos del agente están definidos por la señal de refuerzo inmediata, la tarea del agente se reduce a aprender una estrategia de control (o política) que permita maximizar la recompensa acumulada a lo largo del tiempo (ver [14] para una formalización de esta tarea) Si bien en sus orígenes el AR sirvió como una herramienta teórica limitada a problemas con pequeños espacios de estados, en la actualidad sus aplicaciones han alcanzado áreas de considerable complejidad tales como robótica, manufacturación industrial, problemas de búsqueda combinatorial, etc. La aplicación del AR a problemas del mundo real, trajo aparejado la necesidad de adaptar las técnicas existentes en el área para manejar características complejas propias de este tipo de ambientes (ambientes estocásticos no estacionarios con grandes espacios de estados y/o acciones). En esta presentación, describimos el trabajo realizado por nuestro grupo de investigación en la aplicación del AR a problemas no triviales del mundo real. Para ello, describimos en las secciones 2 a 4, los 3 factores principales que a nuestro criterio deben ser tenidos en cuenta al trabajar con AR en este tipo de ambientes: balance entre exploración y explotación, aceleración del proceso de aprendizaje y generalización. La sección 5 por su parte, describe cuales son los avances y resultados que hemos logrado en relación a estos 3 ítems, y una breve descripción del plan de trabajo futuroEje: Sistemas inteligentes. Metaheurísticas.Red de Universidades con Carreras en Informática (RedUNCI)2000-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf49-51http://sedici.unlp.edu.ar/handle/10915/22106spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:53Zoai:sedici.unlp.edu.ar:10915/22106Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:53.344SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Aprendizaje por Refuerzo aplicado a la resolución de problemas no triviales |
title |
Aprendizaje por Refuerzo aplicado a la resolución de problemas no triviales |
spellingShingle |
Aprendizaje por Refuerzo aplicado a la resolución de problemas no triviales Errecalde, Marcelo Luis Ciencias Informáticas Aprendizaje por Refuerzo Learning resolución de problemas no triviales ARTIFICIAL INTELLIGENCE Heuristic methods |
title_short |
Aprendizaje por Refuerzo aplicado a la resolución de problemas no triviales |
title_full |
Aprendizaje por Refuerzo aplicado a la resolución de problemas no triviales |
title_fullStr |
Aprendizaje por Refuerzo aplicado a la resolución de problemas no triviales |
title_full_unstemmed |
Aprendizaje por Refuerzo aplicado a la resolución de problemas no triviales |
title_sort |
Aprendizaje por Refuerzo aplicado a la resolución de problemas no triviales |
dc.creator.none.fl_str_mv |
Errecalde, Marcelo Luis Muchut, Alfredo Aguirre, Guillermo Montoya, Cecilia Inés |
author |
Errecalde, Marcelo Luis |
author_facet |
Errecalde, Marcelo Luis Muchut, Alfredo Aguirre, Guillermo Montoya, Cecilia Inés |
author_role |
author |
author2 |
Muchut, Alfredo Aguirre, Guillermo Montoya, Cecilia Inés |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Aprendizaje por Refuerzo Learning resolución de problemas no triviales ARTIFICIAL INTELLIGENCE Heuristic methods |
topic |
Ciencias Informáticas Aprendizaje por Refuerzo Learning resolución de problemas no triviales ARTIFICIAL INTELLIGENCE Heuristic methods |
dc.description.none.fl_txt_mv |
El Aprendizaje por Refuerzo (en inglés Reinforcement Learning y de ahora en más AR) ataca el problema de aprender a controlar agentes autónomos, mediante interacciones por prueba y error con un ambiente dinámico, el cual le provee señales de refuerzo por cada acción que realiza. Si los objetivos del agente están definidos por la señal de refuerzo inmediata, la tarea del agente se reduce a aprender una estrategia de control (o política) que permita maximizar la recompensa acumulada a lo largo del tiempo (ver [14] para una formalización de esta tarea) Si bien en sus orígenes el AR sirvió como una herramienta teórica limitada a problemas con pequeños espacios de estados, en la actualidad sus aplicaciones han alcanzado áreas de considerable complejidad tales como robótica, manufacturación industrial, problemas de búsqueda combinatorial, etc. La aplicación del AR a problemas del mundo real, trajo aparejado la necesidad de adaptar las técnicas existentes en el área para manejar características complejas propias de este tipo de ambientes (ambientes estocásticos no estacionarios con grandes espacios de estados y/o acciones). En esta presentación, describimos el trabajo realizado por nuestro grupo de investigación en la aplicación del AR a problemas no triviales del mundo real. Para ello, describimos en las secciones 2 a 4, los 3 factores principales que a nuestro criterio deben ser tenidos en cuenta al trabajar con AR en este tipo de ambientes: balance entre exploración y explotación, aceleración del proceso de aprendizaje y generalización. La sección 5 por su parte, describe cuales son los avances y resultados que hemos logrado en relación a estos 3 ítems, y una breve descripción del plan de trabajo futuro Eje: Sistemas inteligentes. Metaheurísticas. Red de Universidades con Carreras en Informática (RedUNCI) |
description |
El Aprendizaje por Refuerzo (en inglés Reinforcement Learning y de ahora en más AR) ataca el problema de aprender a controlar agentes autónomos, mediante interacciones por prueba y error con un ambiente dinámico, el cual le provee señales de refuerzo por cada acción que realiza. Si los objetivos del agente están definidos por la señal de refuerzo inmediata, la tarea del agente se reduce a aprender una estrategia de control (o política) que permita maximizar la recompensa acumulada a lo largo del tiempo (ver [14] para una formalización de esta tarea) Si bien en sus orígenes el AR sirvió como una herramienta teórica limitada a problemas con pequeños espacios de estados, en la actualidad sus aplicaciones han alcanzado áreas de considerable complejidad tales como robótica, manufacturación industrial, problemas de búsqueda combinatorial, etc. La aplicación del AR a problemas del mundo real, trajo aparejado la necesidad de adaptar las técnicas existentes en el área para manejar características complejas propias de este tipo de ambientes (ambientes estocásticos no estacionarios con grandes espacios de estados y/o acciones). En esta presentación, describimos el trabajo realizado por nuestro grupo de investigación en la aplicación del AR a problemas no triviales del mundo real. Para ello, describimos en las secciones 2 a 4, los 3 factores principales que a nuestro criterio deben ser tenidos en cuenta al trabajar con AR en este tipo de ambientes: balance entre exploración y explotación, aceleración del proceso de aprendizaje y generalización. La sección 5 por su parte, describe cuales son los avances y resultados que hemos logrado en relación a estos 3 ítems, y una breve descripción del plan de trabajo futuro |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22106 |
url |
http://sedici.unlp.edu.ar/handle/10915/22106 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 49-51 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615807397527552 |
score |
13.070432 |