Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias
- Autores
- Gonano, Luis Alberto; Sepúlveda, Marisa Noemí; Rico, Yanina; Kaetzel, Marcia; Valverde, Carlos Alfredo; Dedman, John; Mattiazzi, Alicia Ramona; Vila Petroff, Martín Gerardo
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background-Digitalis-induced Na + accumulation results in an increase in Ca 2+ i via the Na +/Ca 2+ exchanger, leading to enhanced sarcoplasmic reticulum (SR) CaCa 2+ load, responsible for the positive inotropic and toxic arrhythmogenic effects of glycosides. A digitalis-induced increase in Ca 2+ i could also activate calcium-calmodulin kinase II (CaMKII), which has been shown to have proarrhythmic effects. Here, we investigate whether CaMKII underlies digitalis-induced arrhythmias and the subcellular mechanisms involved. Methods and Results-In paced rat ventricular myocytes (0.5 Hz), 50 μmol/L ouabain increased contraction amplitude by 160±5%. In the absence of electric stimulation, ouabain promoted spontaneous contractile activity and Ca 2+ waves. Ouabain activated CaMKII (p-CaMKII), which phosphorylated its downstream targets, phospholamban (PLN) (Thr17) and ryanodine receptor (RyR) (Ser2814). Ouabain-induced spontaneous activity was prevented by inhibiting CaMKII with 2.5 μmol/L KN93 but not by 2.5 μmol/L of the inactive analog, KN92. Similar results were obtained using the CaMKII inhibitor, autocamtide-2 related inhibitory peptide (AIP) (1 to 2.5 μmol/L), and in myocytes from transgenic mice expressing SR-targeted AIP. Consistently, CaMKII overexpression exacerbated ouabain-induced spontaneous contractile activity. Ouabain was associated with an increase in SR Ca 2+ content and Ca 2+ spark frequency, indicative of enhanced SR Ca 2+ leak. KN93 suppressed the ouabain-induced increase in Ca 2+ spark frequency without affecting SR Ca 2+ content. Similar results were obtained with digoxin. In vivo, ouabain-induced arrhythmias were prevented by KN93 and absent in SR-AIP mice. Conclusions-These results show for the first time that CaMKII mediates ouabain-induced arrhythmic/toxic effects. We suggest that CaMKII-dependent phosphorylation of the RyR, resulting in Ca 2+ leak from the SR, is the underlying mechanism involved.
Facultad de Ciencias Médicas
Centro de Investigaciones Cardiovasculares - Materia
-
Ciencias Médicas
Arrhythmias
CaMKII
Cardiotonic steroids
Heart failure - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84091
Ver los metadatos del registro completo
id |
SEDICI_e9322ff6bd73b1df98de9ee05086bec4 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84091 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Calcium-calmodulin kinase II mediates digitalis-induced arrhythmiasGonano, Luis AlbertoSepúlveda, Marisa NoemíRico, YaninaKaetzel, MarciaValverde, Carlos AlfredoDedman, JohnMattiazzi, Alicia RamonaVila Petroff, Martín GerardoCiencias MédicasArrhythmiasCaMKIICardiotonic steroidsHeart failureBackground-Digitalis-induced Na + accumulation results in an increase in Ca 2+ i via the Na +/Ca 2+ exchanger, leading to enhanced sarcoplasmic reticulum (SR) CaCa 2+ load, responsible for the positive inotropic and toxic arrhythmogenic effects of glycosides. A digitalis-induced increase in Ca 2+ i could also activate calcium-calmodulin kinase II (CaMKII), which has been shown to have proarrhythmic effects. Here, we investigate whether CaMKII underlies digitalis-induced arrhythmias and the subcellular mechanisms involved. Methods and Results-In paced rat ventricular myocytes (0.5 Hz), 50 μmol/L ouabain increased contraction amplitude by 160±5%. In the absence of electric stimulation, ouabain promoted spontaneous contractile activity and Ca 2+ waves. Ouabain activated CaMKII (p-CaMKII), which phosphorylated its downstream targets, phospholamban (PLN) (Thr17) and ryanodine receptor (RyR) (Ser2814). Ouabain-induced spontaneous activity was prevented by inhibiting CaMKII with 2.5 μmol/L KN93 but not by 2.5 μmol/L of the inactive analog, KN92. Similar results were obtained using the CaMKII inhibitor, autocamtide-2 related inhibitory peptide (AIP) (1 to 2.5 μmol/L), and in myocytes from transgenic mice expressing SR-targeted AIP. Consistently, CaMKII overexpression exacerbated ouabain-induced spontaneous contractile activity. Ouabain was associated with an increase in SR Ca 2+ content and Ca 2+ spark frequency, indicative of enhanced SR Ca 2+ leak. KN93 suppressed the ouabain-induced increase in Ca 2+ spark frequency without affecting SR Ca 2+ content. Similar results were obtained with digoxin. In vivo, ouabain-induced arrhythmias were prevented by KN93 and absent in SR-AIP mice. Conclusions-These results show for the first time that CaMKII mediates ouabain-induced arrhythmic/toxic effects. We suggest that CaMKII-dependent phosphorylation of the RyR, resulting in Ca 2+ leak from the SR, is the underlying mechanism involved.Facultad de Ciencias MédicasCentro de Investigaciones Cardiovasculares2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf947-957http://sedici.unlp.edu.ar/handle/10915/84091enginfo:eu-repo/semantics/altIdentifier/issn/1941-3149info:eu-repo/semantics/altIdentifier/doi/10.1161/CIRCEP.111.964908info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:06Zoai:sedici.unlp.edu.ar:10915/84091Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:06.313SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias |
title |
Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias |
spellingShingle |
Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias Gonano, Luis Alberto Ciencias Médicas Arrhythmias CaMKII Cardiotonic steroids Heart failure |
title_short |
Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias |
title_full |
Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias |
title_fullStr |
Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias |
title_full_unstemmed |
Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias |
title_sort |
Calcium-calmodulin kinase II mediates digitalis-induced arrhythmias |
dc.creator.none.fl_str_mv |
Gonano, Luis Alberto Sepúlveda, Marisa Noemí Rico, Yanina Kaetzel, Marcia Valverde, Carlos Alfredo Dedman, John Mattiazzi, Alicia Ramona Vila Petroff, Martín Gerardo |
author |
Gonano, Luis Alberto |
author_facet |
Gonano, Luis Alberto Sepúlveda, Marisa Noemí Rico, Yanina Kaetzel, Marcia Valverde, Carlos Alfredo Dedman, John Mattiazzi, Alicia Ramona Vila Petroff, Martín Gerardo |
author_role |
author |
author2 |
Sepúlveda, Marisa Noemí Rico, Yanina Kaetzel, Marcia Valverde, Carlos Alfredo Dedman, John Mattiazzi, Alicia Ramona Vila Petroff, Martín Gerardo |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Médicas Arrhythmias CaMKII Cardiotonic steroids Heart failure |
topic |
Ciencias Médicas Arrhythmias CaMKII Cardiotonic steroids Heart failure |
dc.description.none.fl_txt_mv |
Background-Digitalis-induced Na + accumulation results in an increase in Ca 2+ i via the Na +/Ca 2+ exchanger, leading to enhanced sarcoplasmic reticulum (SR) CaCa 2+ load, responsible for the positive inotropic and toxic arrhythmogenic effects of glycosides. A digitalis-induced increase in Ca 2+ i could also activate calcium-calmodulin kinase II (CaMKII), which has been shown to have proarrhythmic effects. Here, we investigate whether CaMKII underlies digitalis-induced arrhythmias and the subcellular mechanisms involved. Methods and Results-In paced rat ventricular myocytes (0.5 Hz), 50 μmol/L ouabain increased contraction amplitude by 160±5%. In the absence of electric stimulation, ouabain promoted spontaneous contractile activity and Ca 2+ waves. Ouabain activated CaMKII (p-CaMKII), which phosphorylated its downstream targets, phospholamban (PLN) (Thr17) and ryanodine receptor (RyR) (Ser2814). Ouabain-induced spontaneous activity was prevented by inhibiting CaMKII with 2.5 μmol/L KN93 but not by 2.5 μmol/L of the inactive analog, KN92. Similar results were obtained using the CaMKII inhibitor, autocamtide-2 related inhibitory peptide (AIP) (1 to 2.5 μmol/L), and in myocytes from transgenic mice expressing SR-targeted AIP. Consistently, CaMKII overexpression exacerbated ouabain-induced spontaneous contractile activity. Ouabain was associated with an increase in SR Ca 2+ content and Ca 2+ spark frequency, indicative of enhanced SR Ca 2+ leak. KN93 suppressed the ouabain-induced increase in Ca 2+ spark frequency without affecting SR Ca 2+ content. Similar results were obtained with digoxin. In vivo, ouabain-induced arrhythmias were prevented by KN93 and absent in SR-AIP mice. Conclusions-These results show for the first time that CaMKII mediates ouabain-induced arrhythmic/toxic effects. We suggest that CaMKII-dependent phosphorylation of the RyR, resulting in Ca 2+ leak from the SR, is the underlying mechanism involved. Facultad de Ciencias Médicas Centro de Investigaciones Cardiovasculares |
description |
Background-Digitalis-induced Na + accumulation results in an increase in Ca 2+ i via the Na +/Ca 2+ exchanger, leading to enhanced sarcoplasmic reticulum (SR) CaCa 2+ load, responsible for the positive inotropic and toxic arrhythmogenic effects of glycosides. A digitalis-induced increase in Ca 2+ i could also activate calcium-calmodulin kinase II (CaMKII), which has been shown to have proarrhythmic effects. Here, we investigate whether CaMKII underlies digitalis-induced arrhythmias and the subcellular mechanisms involved. Methods and Results-In paced rat ventricular myocytes (0.5 Hz), 50 μmol/L ouabain increased contraction amplitude by 160±5%. In the absence of electric stimulation, ouabain promoted spontaneous contractile activity and Ca 2+ waves. Ouabain activated CaMKII (p-CaMKII), which phosphorylated its downstream targets, phospholamban (PLN) (Thr17) and ryanodine receptor (RyR) (Ser2814). Ouabain-induced spontaneous activity was prevented by inhibiting CaMKII with 2.5 μmol/L KN93 but not by 2.5 μmol/L of the inactive analog, KN92. Similar results were obtained using the CaMKII inhibitor, autocamtide-2 related inhibitory peptide (AIP) (1 to 2.5 μmol/L), and in myocytes from transgenic mice expressing SR-targeted AIP. Consistently, CaMKII overexpression exacerbated ouabain-induced spontaneous contractile activity. Ouabain was associated with an increase in SR Ca 2+ content and Ca 2+ spark frequency, indicative of enhanced SR Ca 2+ leak. KN93 suppressed the ouabain-induced increase in Ca 2+ spark frequency without affecting SR Ca 2+ content. Similar results were obtained with digoxin. In vivo, ouabain-induced arrhythmias were prevented by KN93 and absent in SR-AIP mice. Conclusions-These results show for the first time that CaMKII mediates ouabain-induced arrhythmic/toxic effects. We suggest that CaMKII-dependent phosphorylation of the RyR, resulting in Ca 2+ leak from the SR, is the underlying mechanism involved. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84091 |
url |
http://sedici.unlp.edu.ar/handle/10915/84091 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1941-3149 info:eu-repo/semantics/altIdentifier/doi/10.1161/CIRCEP.111.964908 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 947-957 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616033539719168 |
score |
13.070432 |