Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments

Autores
Zain, Patricio Salvador; Elía, Gonzalo Carlos de; Ronco, María Paula; Guilera, Octavio Miguel
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. Observational and theoretical studies suggest that there are many and various planetary systems in the Universe. Aims. We study the formation and water delivery of planets in the habitable zone (HZ) around solar-type stars. In particular, we study different dynamical environments that are defined by the most massive body in the system. Methods. First of all, a semi-analytical model was used to define the mass of the protoplanetary disks that produce each of the five dynamical scenarios of our research. Then, we made use of the same semi-analytical model to describe the evolution of embryos and planetesimals during the gaseous phase. Finally, we carried out N-body simulations of planetary accretion in order to analyze the formation and water delivery of planets in the HZ in the different dynamical environments. Results. Water worlds are efficiently formed in the HZ in different dynamical scenarios. In systems with a giant planet analog to Jupiter or Saturn around the snow line, super-Earths tend to migrate into the HZ from outside the snow line as a result of interactions with other embryos and accrete water only during the gaseous phase. In systems without giant planets, Earths and super-Earths with high water by mass contents can either be formed in situ in the HZ or migrate into it from outer regions, and water can be accreted during the gaseous phase and in collisions with water-rich embryos and planetesimals. Conclusions. The formation of planets in the HZ with very high water by mass contents seems to be a common process around Sun-like stars. Our research suggests that such planets are still very efficiently produced in different dynamical environments. Moreover, our study indicates that the formation of planets in the HZ with masses and water contents similar to those of Earth seems to be a rare process around solar-type stars in the systems under consideration.
Instituto de Astrofísica de La Plata
Materia
Ciencias Astronómicas
Astrobiology
Methods: numerical
Protoplanetary disks
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/93697

id SEDICI_e8408a443d4b888c17a1195d22ab935e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/93697
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environmentsZain, Patricio SalvadorElía, Gonzalo Carlos deRonco, María PaulaGuilera, Octavio MiguelCiencias AstronómicasAstrobiologyMethods: numericalProtoplanetary disksContext. Observational and theoretical studies suggest that there are many and various planetary systems in the Universe. Aims. We study the formation and water delivery of planets in the habitable zone (HZ) around solar-type stars. In particular, we study different dynamical environments that are defined by the most massive body in the system. Methods. First of all, a semi-analytical model was used to define the mass of the protoplanetary disks that produce each of the five dynamical scenarios of our research. Then, we made use of the same semi-analytical model to describe the evolution of embryos and planetesimals during the gaseous phase. Finally, we carried out N-body simulations of planetary accretion in order to analyze the formation and water delivery of planets in the HZ in the different dynamical environments. Results. Water worlds are efficiently formed in the HZ in different dynamical scenarios. In systems with a giant planet analog to Jupiter or Saturn around the snow line, super-Earths tend to migrate into the HZ from outside the snow line as a result of interactions with other embryos and accrete water only during the gaseous phase. In systems without giant planets, Earths and super-Earths with high water by mass contents can either be formed in situ in the HZ or migrate into it from outer regions, and water can be accreted during the gaseous phase and in collisions with water-rich embryos and planetesimals. Conclusions. The formation of planets in the HZ with very high water by mass contents seems to be a common process around Sun-like stars. Our research suggests that such planets are still very efficiently produced in different dynamical environments. Moreover, our study indicates that the formation of planets in the HZ with masses and water contents similar to those of Earth seems to be a rare process around solar-type stars in the systems under consideration.Instituto de Astrofísica de La Plata2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-18http://sedici.unlp.edu.ar/handle/10915/93697enginfo:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/201730848info:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201730848info:eu-repo/semantics/altIdentifier/hdl/11336/82885info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:26Zoai:sedici.unlp.edu.ar:10915/93697Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:27.042SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments
title Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments
spellingShingle Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments
Zain, Patricio Salvador
Ciencias Astronómicas
Astrobiology
Methods: numerical
Protoplanetary disks
title_short Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments
title_full Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments
title_fullStr Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments
title_full_unstemmed Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments
title_sort Planetary formation and water delivery in the habitable zone around solar-type stars in different dynamical environments
dc.creator.none.fl_str_mv Zain, Patricio Salvador
Elía, Gonzalo Carlos de
Ronco, María Paula
Guilera, Octavio Miguel
author Zain, Patricio Salvador
author_facet Zain, Patricio Salvador
Elía, Gonzalo Carlos de
Ronco, María Paula
Guilera, Octavio Miguel
author_role author
author2 Elía, Gonzalo Carlos de
Ronco, María Paula
Guilera, Octavio Miguel
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Astrobiology
Methods: numerical
Protoplanetary disks
topic Ciencias Astronómicas
Astrobiology
Methods: numerical
Protoplanetary disks
dc.description.none.fl_txt_mv Context. Observational and theoretical studies suggest that there are many and various planetary systems in the Universe. Aims. We study the formation and water delivery of planets in the habitable zone (HZ) around solar-type stars. In particular, we study different dynamical environments that are defined by the most massive body in the system. Methods. First of all, a semi-analytical model was used to define the mass of the protoplanetary disks that produce each of the five dynamical scenarios of our research. Then, we made use of the same semi-analytical model to describe the evolution of embryos and planetesimals during the gaseous phase. Finally, we carried out N-body simulations of planetary accretion in order to analyze the formation and water delivery of planets in the HZ in the different dynamical environments. Results. Water worlds are efficiently formed in the HZ in different dynamical scenarios. In systems with a giant planet analog to Jupiter or Saturn around the snow line, super-Earths tend to migrate into the HZ from outside the snow line as a result of interactions with other embryos and accrete water only during the gaseous phase. In systems without giant planets, Earths and super-Earths with high water by mass contents can either be formed in situ in the HZ or migrate into it from outer regions, and water can be accreted during the gaseous phase and in collisions with water-rich embryos and planetesimals. Conclusions. The formation of planets in the HZ with very high water by mass contents seems to be a common process around Sun-like stars. Our research suggests that such planets are still very efficiently produced in different dynamical environments. Moreover, our study indicates that the formation of planets in the HZ with masses and water contents similar to those of Earth seems to be a rare process around solar-type stars in the systems under consideration.
Instituto de Astrofísica de La Plata
description Context. Observational and theoretical studies suggest that there are many and various planetary systems in the Universe. Aims. We study the formation and water delivery of planets in the habitable zone (HZ) around solar-type stars. In particular, we study different dynamical environments that are defined by the most massive body in the system. Methods. First of all, a semi-analytical model was used to define the mass of the protoplanetary disks that produce each of the five dynamical scenarios of our research. Then, we made use of the same semi-analytical model to describe the evolution of embryos and planetesimals during the gaseous phase. Finally, we carried out N-body simulations of planetary accretion in order to analyze the formation and water delivery of planets in the HZ in the different dynamical environments. Results. Water worlds are efficiently formed in the HZ in different dynamical scenarios. In systems with a giant planet analog to Jupiter or Saturn around the snow line, super-Earths tend to migrate into the HZ from outside the snow line as a result of interactions with other embryos and accrete water only during the gaseous phase. In systems without giant planets, Earths and super-Earths with high water by mass contents can either be formed in situ in the HZ or migrate into it from outer regions, and water can be accreted during the gaseous phase and in collisions with water-rich embryos and planetesimals. Conclusions. The formation of planets in the HZ with very high water by mass contents seems to be a common process around Sun-like stars. Our research suggests that such planets are still very efficiently produced in different dynamical environments. Moreover, our study indicates that the formation of planets in the HZ with masses and water contents similar to those of Earth seems to be a rare process around solar-type stars in the systems under consideration.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/93697
url http://sedici.unlp.edu.ar/handle/10915/93697
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.aanda.org/10.1051/0004-6361/201730848
info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201730848
info:eu-repo/semantics/altIdentifier/hdl/11336/82885
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1-18
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616068158455808
score 13.070432