Técnicas no perturbativas en Hamiltonianos de muchos cuerpos
- Autores
- Montani, Fernando Fabián
- Año de publicación
- 2000
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Civitarese, Enrique Osvaldo
- Descripción
- En esta tesis se desarrollan y aplican métodos no perturbativos en modelos microscópicos de las interacciones entre nucleones. En las aproximaciones usuales, y en relación a Hamiltonianos nucleares, se consideran las expansiones armónicas alrededor de un mínimo, los movimientos de pequeña amplitud (método de linealización de Tamm-Dankoff (TDA) y aproximación de fases al azar (RPA) [RJNG80]) y las llamadas expansiones bosónicas [KLEIN-MARSH91]. En el caso de las expansiones bosónicas se parte de una cierta representación y se establecen correspondencias entre las estructuras microscópicas y los grados de libertad colectivos. Este tipo de esquemas se basa en la identificación de términos dominantes del Hamiltoniano. Los desarrollos perturbativos, por su parte, están referidos a la solución de campo medio. Obviamente, al considerar este esquema (campo medio correcciones perturbativas) se introducen de hecho rupturas de simetrías (relacionadas con la adopción de una solución de campo medio) y problemas de convergencia. En esta tesis se estudia el comportamiento de los métodos de linealización y de las expansiones bosónicas en presencia de rupturas variadas de simetrías y en relación con la introducción de operadores colectivos. El objetivo del trabajo desarrollado consistió específicamente en los siguientes puntos: 1) el estudio de la convergencia de las expansiones perturbativas cuando se trata con transformaciones bosónicas, y, 2) la validez de las bosonizaciones en presencia de rupturas de simetría.
Tesis digitalizada en SEDICI gracias a la colaboración del autor.
Doctor en Física
Universidad Nacional de La Plata
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Física
Mecánica analítica
Mecánica
Mecánica cuántica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/2483
Ver los metadatos del registro completo
id |
SEDICI_e75423c895d7608abea0c7131a2df684 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/2483 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Técnicas no perturbativas en Hamiltonianos de muchos cuerposMontani, Fernando FabiánCiencias ExactasFísicaMecánica analíticaMecánicaMecánica cuánticaEn esta tesis se desarrollan y aplican métodos no perturbativos en modelos microscópicos de las interacciones entre nucleones. En las aproximaciones usuales, y en relación a Hamiltonianos nucleares, se consideran las expansiones armónicas alrededor de un mínimo, los movimientos de pequeña amplitud (método de linealización de Tamm-Dankoff (TDA) y aproximación de fases al azar (RPA) [RJNG80]) y las llamadas expansiones bosónicas [KLEIN-MARSH91]. En el caso de las expansiones bosónicas se parte de una cierta representación y se establecen correspondencias entre las estructuras microscópicas y los grados de libertad colectivos. Este tipo de esquemas se basa en la identificación de términos dominantes del Hamiltoniano. Los desarrollos perturbativos, por su parte, están referidos a la solución de campo medio. Obviamente, al considerar este esquema (campo medio correcciones perturbativas) se introducen de hecho rupturas de simetrías (relacionadas con la adopción de una solución de campo medio) y problemas de convergencia. En esta tesis se estudia el comportamiento de los métodos de linealización y de las expansiones bosónicas en presencia de rupturas variadas de simetrías y en relación con la introducción de operadores colectivos. El objetivo del trabajo desarrollado consistió específicamente en los siguientes puntos: 1) el estudio de la convergencia de las expansiones perturbativas cuando se trata con transformaciones bosónicas, y, 2) la validez de las bosonizaciones en presencia de rupturas de simetría.Tesis digitalizada en SEDICI gracias a la colaboración del autor.Doctor en FísicaUniversidad Nacional de La PlataFacultad de Ciencias ExactasCivitarese, Enrique Osvaldo2000info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/2483https://doi.org/10.35537/10915/2483spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:48:55Zoai:sedici.unlp.edu.ar:10915/2483Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:48:57.202SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Técnicas no perturbativas en Hamiltonianos de muchos cuerpos |
title |
Técnicas no perturbativas en Hamiltonianos de muchos cuerpos |
spellingShingle |
Técnicas no perturbativas en Hamiltonianos de muchos cuerpos Montani, Fernando Fabián Ciencias Exactas Física Mecánica analítica Mecánica Mecánica cuántica |
title_short |
Técnicas no perturbativas en Hamiltonianos de muchos cuerpos |
title_full |
Técnicas no perturbativas en Hamiltonianos de muchos cuerpos |
title_fullStr |
Técnicas no perturbativas en Hamiltonianos de muchos cuerpos |
title_full_unstemmed |
Técnicas no perturbativas en Hamiltonianos de muchos cuerpos |
title_sort |
Técnicas no perturbativas en Hamiltonianos de muchos cuerpos |
dc.creator.none.fl_str_mv |
Montani, Fernando Fabián |
author |
Montani, Fernando Fabián |
author_facet |
Montani, Fernando Fabián |
author_role |
author |
dc.contributor.none.fl_str_mv |
Civitarese, Enrique Osvaldo |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física Mecánica analítica Mecánica Mecánica cuántica |
topic |
Ciencias Exactas Física Mecánica analítica Mecánica Mecánica cuántica |
dc.description.none.fl_txt_mv |
En esta tesis se desarrollan y aplican métodos no perturbativos en modelos microscópicos de las interacciones entre nucleones. En las aproximaciones usuales, y en relación a Hamiltonianos nucleares, se consideran las expansiones armónicas alrededor de un mínimo, los movimientos de pequeña amplitud (método de linealización de Tamm-Dankoff (TDA) y aproximación de fases al azar (RPA) [RJNG80]) y las llamadas expansiones bosónicas [KLEIN-MARSH91]. En el caso de las expansiones bosónicas se parte de una cierta representación y se establecen correspondencias entre las estructuras microscópicas y los grados de libertad colectivos. Este tipo de esquemas se basa en la identificación de términos dominantes del Hamiltoniano. Los desarrollos perturbativos, por su parte, están referidos a la solución de campo medio. Obviamente, al considerar este esquema (campo medio correcciones perturbativas) se introducen de hecho rupturas de simetrías (relacionadas con la adopción de una solución de campo medio) y problemas de convergencia. En esta tesis se estudia el comportamiento de los métodos de linealización y de las expansiones bosónicas en presencia de rupturas variadas de simetrías y en relación con la introducción de operadores colectivos. El objetivo del trabajo desarrollado consistió específicamente en los siguientes puntos: 1) el estudio de la convergencia de las expansiones perturbativas cuando se trata con transformaciones bosónicas, y, 2) la validez de las bosonizaciones en presencia de rupturas de simetría. Tesis digitalizada en SEDICI gracias a la colaboración del autor. Doctor en Física Universidad Nacional de La Plata Facultad de Ciencias Exactas |
description |
En esta tesis se desarrollan y aplican métodos no perturbativos en modelos microscópicos de las interacciones entre nucleones. En las aproximaciones usuales, y en relación a Hamiltonianos nucleares, se consideran las expansiones armónicas alrededor de un mínimo, los movimientos de pequeña amplitud (método de linealización de Tamm-Dankoff (TDA) y aproximación de fases al azar (RPA) [RJNG80]) y las llamadas expansiones bosónicas [KLEIN-MARSH91]. En el caso de las expansiones bosónicas se parte de una cierta representación y se establecen correspondencias entre las estructuras microscópicas y los grados de libertad colectivos. Este tipo de esquemas se basa en la identificación de términos dominantes del Hamiltoniano. Los desarrollos perturbativos, por su parte, están referidos a la solución de campo medio. Obviamente, al considerar este esquema (campo medio correcciones perturbativas) se introducen de hecho rupturas de simetrías (relacionadas con la adopción de una solución de campo medio) y problemas de convergencia. En esta tesis se estudia el comportamiento de los métodos de linealización y de las expansiones bosónicas en presencia de rupturas variadas de simetrías y en relación con la introducción de operadores colectivos. El objetivo del trabajo desarrollado consistió específicamente en los siguientes puntos: 1) el estudio de la convergencia de las expansiones perturbativas cuando se trata con transformaciones bosónicas, y, 2) la validez de las bosonizaciones en presencia de rupturas de simetría. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion Tesis de doctorado http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/2483 https://doi.org/10.35537/10915/2483 |
url |
http://sedici.unlp.edu.ar/handle/10915/2483 https://doi.org/10.35537/10915/2483 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615740860137472 |
score |
13.070432 |