Modelos de estimación de biomasa herbácea neta a partir de sensores remotos
- Autores
- Nolasco, Miguel; Álvarez, Paula; Suárez, Franco; Karlin, Marcos
- Año de publicación
- 2019
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- La cuantificación de la biomasa herbácea es importante, para calcular la carga animal y determinar potenciales riesgos de ignición. Sin embargo, la valoración de la biomasa en el terreno posee limitaciones para representar su variabilidad temporal y espacial. En este contexto la tecnología satelital posee el potencial de monitorear la vegetación en áreas extensas y de forma periódica. El objetivo del presente trabajo fue elaborar modelos que permitan estimar remota-mente la cantidad de biomasa en praderas polifíticas del centro de Argentina. Se seleccionaron seis sitios de entrenamiento en pastizales de la Reserva Natural de la Defensa La Calera, Provincia de Córdoba. Se utilizaron las bandas 2-3-4-5-6 y 7 de Landsat 8, e índices de diferencia normalizada de vegetación, agua y humedad. El análisis definió dos ecuaciones de regresión lineal múltiple estadísticamente significativas (p<0,0001) para la estimación de biomasa acumulada instantánea. El modelo #1, de máximo R2 (R2=0,8; AIC=407,08) incluía los índices NDVI y NDMI y las bandas 2-3-4-6. El modelo #2, de mínimo AIC (R2=0,78; AIC=406,14) abarcaba las bandas 2-3-5 y el índice NDVI. Ambos modelos obtenidos permiten la estimación de biomasa herbácea acumulada, independientemente del pastoreo, época del año y condición de la biomasa.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Córdoba
Gramíneas
Índice normalizado
Landsat 8
Análisis de Regresión - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/88086
Ver los metadatos del registro completo
id |
SEDICI_e6a11f0807bf22aeed5e12aece474309 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/88086 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Modelos de estimación de biomasa herbácea neta a partir de sensores remotosNolasco, MiguelÁlvarez, PaulaSuárez, FrancoKarlin, MarcosCiencias InformáticasCórdobaGramíneasÍndice normalizadoLandsat 8Análisis de RegresiónLa cuantificación de la biomasa herbácea es importante, para calcular la carga animal y determinar potenciales riesgos de ignición. Sin embargo, la valoración de la biomasa en el terreno posee limitaciones para representar su variabilidad temporal y espacial. En este contexto la tecnología satelital posee el potencial de monitorear la vegetación en áreas extensas y de forma periódica. El objetivo del presente trabajo fue elaborar modelos que permitan estimar remota-mente la cantidad de biomasa en praderas polifíticas del centro de Argentina. Se seleccionaron seis sitios de entrenamiento en pastizales de la Reserva Natural de la Defensa La Calera, Provincia de Córdoba. Se utilizaron las bandas 2-3-4-5-6 y 7 de Landsat 8, e índices de diferencia normalizada de vegetación, agua y humedad. El análisis definió dos ecuaciones de regresión lineal múltiple estadísticamente significativas (p<0,0001) para la estimación de biomasa acumulada instantánea. El modelo #1, de máximo R2 (R2=0,8; AIC=407,08) incluía los índices NDVI y NDMI y las bandas 2-3-4-6. El modelo #2, de mínimo AIC (R2=0,78; AIC=406,14) abarcaba las bandas 2-3-5 y el índice NDVI. Ambos modelos obtenidos permiten la estimación de biomasa herbácea acumulada, independientemente del pastoreo, época del año y condición de la biomasa.Sociedad Argentina de Informática e Investigación Operativa2019-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf83-95http://sedici.unlp.edu.ar/handle/10915/88086spainfo:eu-repo/semantics/altIdentifier/issn/2525-0949info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:17:34Zoai:sedici.unlp.edu.ar:10915/88086Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:17:34.808SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Modelos de estimación de biomasa herbácea neta a partir de sensores remotos |
title |
Modelos de estimación de biomasa herbácea neta a partir de sensores remotos |
spellingShingle |
Modelos de estimación de biomasa herbácea neta a partir de sensores remotos Nolasco, Miguel Ciencias Informáticas Córdoba Gramíneas Índice normalizado Landsat 8 Análisis de Regresión |
title_short |
Modelos de estimación de biomasa herbácea neta a partir de sensores remotos |
title_full |
Modelos de estimación de biomasa herbácea neta a partir de sensores remotos |
title_fullStr |
Modelos de estimación de biomasa herbácea neta a partir de sensores remotos |
title_full_unstemmed |
Modelos de estimación de biomasa herbácea neta a partir de sensores remotos |
title_sort |
Modelos de estimación de biomasa herbácea neta a partir de sensores remotos |
dc.creator.none.fl_str_mv |
Nolasco, Miguel Álvarez, Paula Suárez, Franco Karlin, Marcos |
author |
Nolasco, Miguel |
author_facet |
Nolasco, Miguel Álvarez, Paula Suárez, Franco Karlin, Marcos |
author_role |
author |
author2 |
Álvarez, Paula Suárez, Franco Karlin, Marcos |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Córdoba Gramíneas Índice normalizado Landsat 8 Análisis de Regresión |
topic |
Ciencias Informáticas Córdoba Gramíneas Índice normalizado Landsat 8 Análisis de Regresión |
dc.description.none.fl_txt_mv |
La cuantificación de la biomasa herbácea es importante, para calcular la carga animal y determinar potenciales riesgos de ignición. Sin embargo, la valoración de la biomasa en el terreno posee limitaciones para representar su variabilidad temporal y espacial. En este contexto la tecnología satelital posee el potencial de monitorear la vegetación en áreas extensas y de forma periódica. El objetivo del presente trabajo fue elaborar modelos que permitan estimar remota-mente la cantidad de biomasa en praderas polifíticas del centro de Argentina. Se seleccionaron seis sitios de entrenamiento en pastizales de la Reserva Natural de la Defensa La Calera, Provincia de Córdoba. Se utilizaron las bandas 2-3-4-5-6 y 7 de Landsat 8, e índices de diferencia normalizada de vegetación, agua y humedad. El análisis definió dos ecuaciones de regresión lineal múltiple estadísticamente significativas (p<0,0001) para la estimación de biomasa acumulada instantánea. El modelo #1, de máximo R2 (R2=0,8; AIC=407,08) incluía los índices NDVI y NDMI y las bandas 2-3-4-6. El modelo #2, de mínimo AIC (R2=0,78; AIC=406,14) abarcaba las bandas 2-3-5 y el índice NDVI. Ambos modelos obtenidos permiten la estimación de biomasa herbácea acumulada, independientemente del pastoreo, época del año y condición de la biomasa. Sociedad Argentina de Informática e Investigación Operativa |
description |
La cuantificación de la biomasa herbácea es importante, para calcular la carga animal y determinar potenciales riesgos de ignición. Sin embargo, la valoración de la biomasa en el terreno posee limitaciones para representar su variabilidad temporal y espacial. En este contexto la tecnología satelital posee el potencial de monitorear la vegetación en áreas extensas y de forma periódica. El objetivo del presente trabajo fue elaborar modelos que permitan estimar remota-mente la cantidad de biomasa en praderas polifíticas del centro de Argentina. Se seleccionaron seis sitios de entrenamiento en pastizales de la Reserva Natural de la Defensa La Calera, Provincia de Córdoba. Se utilizaron las bandas 2-3-4-5-6 y 7 de Landsat 8, e índices de diferencia normalizada de vegetación, agua y humedad. El análisis definió dos ecuaciones de regresión lineal múltiple estadísticamente significativas (p<0,0001) para la estimación de biomasa acumulada instantánea. El modelo #1, de máximo R2 (R2=0,8; AIC=407,08) incluía los índices NDVI y NDMI y las bandas 2-3-4-6. El modelo #2, de mínimo AIC (R2=0,78; AIC=406,14) abarcaba las bandas 2-3-5 y el índice NDVI. Ambos modelos obtenidos permiten la estimación de biomasa herbácea acumulada, independientemente del pastoreo, época del año y condición de la biomasa. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/88086 |
url |
http://sedici.unlp.edu.ar/handle/10915/88086 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2525-0949 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 83-95 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616048992583680 |
score |
13.070432 |