nIFTy cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics

Autores
Scóccola, Claudia Graciela
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a comparison of major methodologies of fast generating mock halo or galaxy catalogues. The comparison is done for two-point (power spectrum and two-point correlation function in real and redshift space), and the three-point clustering statistics (bispectrum and three-point correlation function). The reference catalogues are drawn from the BigMultiDark N-body simulation. Both friend-of-friends (including distinct haloes only) and spherical overdensity (including distinct haloes and subhalos) catalogues have been used with the typical number density of a large volume galaxy surveys. We demonstrate that a proper biasing model is essential for reproducing the power spectrum at quasi-linear and even smaller scales. With respect to various clustering statistics, a methodology based on perturbation theory and a realistic biasing model leads to very good agreement with N-body simulations. However, for the quadrupole of the correlation function or the power spectrum, only the method based on semi-N-body simulation could reach high accuracy (1 per cent level) at small scales, i.e. r < 25 h-1 Mpc or k > 0.15 h Mpc-1. Full N-body solutions will remain indispensable to produce reference catalogues. Nevertheless, we have demonstrated that the more efficient approximate solvers can reach a few per cent accuracy in terms of clustering statistics at the scales interesting for the large-scale structure analysis. This makes them useful for massive production aimed at covariance studies, to scan large parameter spaces, and to estimate uncertainties in data analysis techniques, such as baryon acoustic oscillation reconstruction, redshift distortion measurements, etc.
La lista completa de autores que integran el documento puede consultarse en el archivo.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Cosmology: observations
Distance scale
Large-scale structure of Universe
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/86143

id SEDICI_e3c46f61bb1772f7a0ed6ccd92579de4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/86143
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling nIFTy cosmology: Galaxy/halo mock catalogue comparison project on clustering statisticsScóccola, Claudia GracielaCiencias AstronómicasCosmology: observationsDistance scaleLarge-scale structure of UniverseWe present a comparison of major methodologies of fast generating mock halo or galaxy catalogues. The comparison is done for two-point (power spectrum and two-point correlation function in real and redshift space), and the three-point clustering statistics (bispectrum and three-point correlation function). The reference catalogues are drawn from the BigMultiDark N-body simulation. Both friend-of-friends (including distinct haloes only) and spherical overdensity (including distinct haloes and subhalos) catalogues have been used with the typical number density of a large volume galaxy surveys. We demonstrate that a proper biasing model is essential for reproducing the power spectrum at quasi-linear and even smaller scales. With respect to various clustering statistics, a methodology based on perturbation theory and a realistic biasing model leads to very good agreement with N-body simulations. However, for the quadrupole of the correlation function or the power spectrum, only the method based on semi-N-body simulation could reach high accuracy (1 per cent level) at small scales, i.e. r < 25 h<SUP>-1</SUP> Mpc or k > 0.15 h Mpc<SUP>-1</SUP>. Full N-body solutions will remain indispensable to produce reference catalogues. Nevertheless, we have demonstrated that the more efficient approximate solvers can reach a few per cent accuracy in terms of clustering statistics at the scales interesting for the large-scale structure analysis. This makes them useful for massive production aimed at covariance studies, to scan large parameter spaces, and to estimate uncertainties in data analysis techniques, such as baryon acoustic oscillation reconstruction, redshift distortion measurements, etc.La lista completa de autores que integran el documento puede consultarse en el archivo.Facultad de Ciencias Astronómicas y Geofísicas2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf686-700http://sedici.unlp.edu.ar/handle/10915/86143enginfo:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stv1289info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:55Zoai:sedici.unlp.edu.ar:10915/86143Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:55.519SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv nIFTy cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics
title nIFTy cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics
spellingShingle nIFTy cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics
Scóccola, Claudia Graciela
Ciencias Astronómicas
Cosmology: observations
Distance scale
Large-scale structure of Universe
title_short nIFTy cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics
title_full nIFTy cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics
title_fullStr nIFTy cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics
title_full_unstemmed nIFTy cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics
title_sort nIFTy cosmology: Galaxy/halo mock catalogue comparison project on clustering statistics
dc.creator.none.fl_str_mv Scóccola, Claudia Graciela
author Scóccola, Claudia Graciela
author_facet Scóccola, Claudia Graciela
author_role author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Cosmology: observations
Distance scale
Large-scale structure of Universe
topic Ciencias Astronómicas
Cosmology: observations
Distance scale
Large-scale structure of Universe
dc.description.none.fl_txt_mv We present a comparison of major methodologies of fast generating mock halo or galaxy catalogues. The comparison is done for two-point (power spectrum and two-point correlation function in real and redshift space), and the three-point clustering statistics (bispectrum and three-point correlation function). The reference catalogues are drawn from the BigMultiDark N-body simulation. Both friend-of-friends (including distinct haloes only) and spherical overdensity (including distinct haloes and subhalos) catalogues have been used with the typical number density of a large volume galaxy surveys. We demonstrate that a proper biasing model is essential for reproducing the power spectrum at quasi-linear and even smaller scales. With respect to various clustering statistics, a methodology based on perturbation theory and a realistic biasing model leads to very good agreement with N-body simulations. However, for the quadrupole of the correlation function or the power spectrum, only the method based on semi-N-body simulation could reach high accuracy (1 per cent level) at small scales, i.e. r < 25 h<SUP>-1</SUP> Mpc or k > 0.15 h Mpc<SUP>-1</SUP>. Full N-body solutions will remain indispensable to produce reference catalogues. Nevertheless, we have demonstrated that the more efficient approximate solvers can reach a few per cent accuracy in terms of clustering statistics at the scales interesting for the large-scale structure analysis. This makes them useful for massive production aimed at covariance studies, to scan large parameter spaces, and to estimate uncertainties in data analysis techniques, such as baryon acoustic oscillation reconstruction, redshift distortion measurements, etc.
La lista completa de autores que integran el documento puede consultarse en el archivo.
Facultad de Ciencias Astronómicas y Geofísicas
description We present a comparison of major methodologies of fast generating mock halo or galaxy catalogues. The comparison is done for two-point (power spectrum and two-point correlation function in real and redshift space), and the three-point clustering statistics (bispectrum and three-point correlation function). The reference catalogues are drawn from the BigMultiDark N-body simulation. Both friend-of-friends (including distinct haloes only) and spherical overdensity (including distinct haloes and subhalos) catalogues have been used with the typical number density of a large volume galaxy surveys. We demonstrate that a proper biasing model is essential for reproducing the power spectrum at quasi-linear and even smaller scales. With respect to various clustering statistics, a methodology based on perturbation theory and a realistic biasing model leads to very good agreement with N-body simulations. However, for the quadrupole of the correlation function or the power spectrum, only the method based on semi-N-body simulation could reach high accuracy (1 per cent level) at small scales, i.e. r < 25 h<SUP>-1</SUP> Mpc or k > 0.15 h Mpc<SUP>-1</SUP>. Full N-body solutions will remain indispensable to produce reference catalogues. Nevertheless, we have demonstrated that the more efficient approximate solvers can reach a few per cent accuracy in terms of clustering statistics at the scales interesting for the large-scale structure analysis. This makes them useful for massive production aimed at covariance studies, to scan large parameter spaces, and to estimate uncertainties in data analysis techniques, such as baryon acoustic oscillation reconstruction, redshift distortion measurements, etc.
publishDate 2015
dc.date.none.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/86143
url http://sedici.unlp.edu.ar/handle/10915/86143
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0035-8711
info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stv1289
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
686-700
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616042195714048
score 13.070432