Clasificador multiclase con redes neuronales convolucionales

Autores
Lorenzo, M.; Iarussi, F.; Cifuentes, V.; Rodriguez, G.
Año de publicación
2020
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
El área de reconocimiento de imágenes ha cobrado considerable interés en los últimos años. Este trabajo explora arquitectura de redes neuronales para conseguir un modelo capaz de reconocer un conjunto variado de 30 especies de animales en su hábitat natural. Para cumplir el objetivo, se utilizaron técnicas de Transfer Learning y Fine Tuning para adaptar redes neuronales ampliamente usadas que han demostrado ser eficaces y eficientes, tales como VGG-16, ResNet50 e InceptionV3. Previamente, se procesaron las imágenes de un dataset, reduciendo su tamaño y extrayendo la región de interés. Asimismo, se implementaron técnicas para evitar el overfitting como data augmentation, early stopping, decay, reduceLROnPlateau y oversampling. Los resultados obtenidos fueron satisfactorios, tanto en métricas de error y precisión, como en F1-Score y ROC-AUC, alcanzando valores muy cercanos a 1. Una vez alcanzados estos resultados se realizó un análisis para comprender los puntos débiles de los modelos obtenidos, utilizando t-SNE y matrices de confusión. Como conclusión, los principales errores se encuentran entre especies de animales muy similares en formas, tamaños, hábitat, colores y texturas que incluso para un humano sería difícil diferenciar.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Deep Learning
Redes neuronales convolucionales
Transfer learning
T-SNE
Hiperparámetros
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/115892

id SEDICI_dd9a285172a7a0c6ed8fb3e5aaf3cd7b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/115892
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Clasificador multiclase con redes neuronales convolucionalesLorenzo, M.Iarussi, F.Cifuentes, V.Rodriguez, G.Ciencias InformáticasDeep LearningRedes neuronales convolucionalesTransfer learningT-SNEHiperparámetrosEl área de reconocimiento de imágenes ha cobrado considerable interés en los últimos años. Este trabajo explora arquitectura de redes neuronales para conseguir un modelo capaz de reconocer un conjunto variado de 30 especies de animales en su hábitat natural. Para cumplir el objetivo, se utilizaron técnicas de Transfer Learning y Fine Tuning para adaptar redes neuronales ampliamente usadas que han demostrado ser eficaces y eficientes, tales como VGG-16, ResNet50 e InceptionV3. Previamente, se procesaron las imágenes de un dataset, reduciendo su tamaño y extrayendo la región de interés. Asimismo, se implementaron técnicas para evitar el overfitting como data augmentation, early stopping, decay, reduceLROnPlateau y oversampling. Los resultados obtenidos fueron satisfactorios, tanto en métricas de error y precisión, como en F1-Score y ROC-AUC, alcanzando valores muy cercanos a 1. Una vez alcanzados estos resultados se realizó un análisis para comprender los puntos débiles de los modelos obtenidos, utilizando t-SNE y matrices de confusión. Como conclusión, los principales errores se encuentran entre especies de animales muy similares en formas, tamaños, hábitat, colores y texturas que incluso para un humano sería difícil diferenciar.Sociedad Argentina de Informática e Investigación Operativa2020-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf137-146http://sedici.unlp.edu.ar/handle/10915/115892spainfo:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/est/EST-09.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7615info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:18:53Zoai:sedici.unlp.edu.ar:10915/115892Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:18:53.968SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Clasificador multiclase con redes neuronales convolucionales
title Clasificador multiclase con redes neuronales convolucionales
spellingShingle Clasificador multiclase con redes neuronales convolucionales
Lorenzo, M.
Ciencias Informáticas
Deep Learning
Redes neuronales convolucionales
Transfer learning
T-SNE
Hiperparámetros
title_short Clasificador multiclase con redes neuronales convolucionales
title_full Clasificador multiclase con redes neuronales convolucionales
title_fullStr Clasificador multiclase con redes neuronales convolucionales
title_full_unstemmed Clasificador multiclase con redes neuronales convolucionales
title_sort Clasificador multiclase con redes neuronales convolucionales
dc.creator.none.fl_str_mv Lorenzo, M.
Iarussi, F.
Cifuentes, V.
Rodriguez, G.
author Lorenzo, M.
author_facet Lorenzo, M.
Iarussi, F.
Cifuentes, V.
Rodriguez, G.
author_role author
author2 Iarussi, F.
Cifuentes, V.
Rodriguez, G.
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Deep Learning
Redes neuronales convolucionales
Transfer learning
T-SNE
Hiperparámetros
topic Ciencias Informáticas
Deep Learning
Redes neuronales convolucionales
Transfer learning
T-SNE
Hiperparámetros
dc.description.none.fl_txt_mv El área de reconocimiento de imágenes ha cobrado considerable interés en los últimos años. Este trabajo explora arquitectura de redes neuronales para conseguir un modelo capaz de reconocer un conjunto variado de 30 especies de animales en su hábitat natural. Para cumplir el objetivo, se utilizaron técnicas de Transfer Learning y Fine Tuning para adaptar redes neuronales ampliamente usadas que han demostrado ser eficaces y eficientes, tales como VGG-16, ResNet50 e InceptionV3. Previamente, se procesaron las imágenes de un dataset, reduciendo su tamaño y extrayendo la región de interés. Asimismo, se implementaron técnicas para evitar el overfitting como data augmentation, early stopping, decay, reduceLROnPlateau y oversampling. Los resultados obtenidos fueron satisfactorios, tanto en métricas de error y precisión, como en F1-Score y ROC-AUC, alcanzando valores muy cercanos a 1. Una vez alcanzados estos resultados se realizó un análisis para comprender los puntos débiles de los modelos obtenidos, utilizando t-SNE y matrices de confusión. Como conclusión, los principales errores se encuentran entre especies de animales muy similares en formas, tamaños, hábitat, colores y texturas que incluso para un humano sería difícil diferenciar.
Sociedad Argentina de Informática e Investigación Operativa
description El área de reconocimiento de imágenes ha cobrado considerable interés en los últimos años. Este trabajo explora arquitectura de redes neuronales para conseguir un modelo capaz de reconocer un conjunto variado de 30 especies de animales en su hábitat natural. Para cumplir el objetivo, se utilizaron técnicas de Transfer Learning y Fine Tuning para adaptar redes neuronales ampliamente usadas que han demostrado ser eficaces y eficientes, tales como VGG-16, ResNet50 e InceptionV3. Previamente, se procesaron las imágenes de un dataset, reduciendo su tamaño y extrayendo la región de interés. Asimismo, se implementaron técnicas para evitar el overfitting como data augmentation, early stopping, decay, reduceLROnPlateau y oversampling. Los resultados obtenidos fueron satisfactorios, tanto en métricas de error y precisión, como en F1-Score y ROC-AUC, alcanzando valores muy cercanos a 1. Una vez alcanzados estos resultados se realizó un análisis para comprender los puntos débiles de los modelos obtenidos, utilizando t-SNE y matrices de confusión. Como conclusión, los principales errores se encuentran entre especies de animales muy similares en formas, tamaños, hábitat, colores y texturas que incluso para un humano sería difícil diferenciar.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/115892
url http://sedici.unlp.edu.ar/handle/10915/115892
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/est/EST-09.pdf
info:eu-repo/semantics/altIdentifier/issn/2451-7615
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/3.0/
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
dc.format.none.fl_str_mv application/pdf
137-146
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064246783213568
score 13.22299