Lineal perspective estimation on monocular images

Autores
Chappero, Eugenio J.; Guerrero, Roberto A.; Serón Arbeloa, Francisco J.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Depth estimation from monocular images can be retrieved from the perspective distortion. One major e ect of this distortion is that a set of parallel lines in the real world converges into a single point in the image plane. The estimation of the coordinates of the vanishing point can be retrieved directly by di erent ways, like Hough Transform and First derivative approaches. Many of them work on speci c real scene characteristics and often lead to spurious vanishing points. Technology and computational advances suggest that some re nements to these simple techniques or a combination of them could lead to more con dent vanishing point detection than modelling and developing a new complicated ones. In this paper we study the behaviour of two classical approaches, introduce them some improvements and propose a new combinational technique to estimate the location of the vanishing point in an image. The solutions will be described and compared, also through the discussion of the results obtained from their application to real images.
Presentado en el VIII Workshop Computación Gráfica, Imágenes y Visualización (WCGIV)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Procesamiento de Imagen Asistida por Computador
image analysis; computer vision; digital image processing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/19149

id SEDICI_dd23425d5842e27fc086b36295327b51
oai_identifier_str oai:sedici.unlp.edu.ar:10915/19149
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Lineal perspective estimation on monocular imagesChappero, Eugenio J.Guerrero, Roberto A.Serón Arbeloa, Francisco J.Ciencias InformáticasProcesamiento de Imagen Asistida por Computadorimage analysis; computer vision; digital image processingDepth estimation from monocular images can be retrieved from the perspective distortion. One major e ect of this distortion is that a set of parallel lines in the real world converges into a single point in the image plane. The estimation of the coordinates of the vanishing point can be retrieved directly by di erent ways, like Hough Transform and First derivative approaches. Many of them work on speci c real scene characteristics and often lead to spurious vanishing points. Technology and computational advances suggest that some re nements to these simple techniques or a combination of them could lead to more con dent vanishing point detection than modelling and developing a new complicated ones. In this paper we study the behaviour of two classical approaches, introduce them some improvements and propose a new combinational technique to estimate the location of the vanishing point in an image. The solutions will be described and compared, also through the discussion of the results obtained from their application to real images.Presentado en el VIII Workshop Computación Gráfica, Imágenes y Visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI)2010-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf444-454http://sedici.unlp.edu.ar/handle/10915/19149enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:53:46Zoai:sedici.unlp.edu.ar:10915/19149Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:53:46.97SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Lineal perspective estimation on monocular images
title Lineal perspective estimation on monocular images
spellingShingle Lineal perspective estimation on monocular images
Chappero, Eugenio J.
Ciencias Informáticas
Procesamiento de Imagen Asistida por Computador
image analysis; computer vision; digital image processing
title_short Lineal perspective estimation on monocular images
title_full Lineal perspective estimation on monocular images
title_fullStr Lineal perspective estimation on monocular images
title_full_unstemmed Lineal perspective estimation on monocular images
title_sort Lineal perspective estimation on monocular images
dc.creator.none.fl_str_mv Chappero, Eugenio J.
Guerrero, Roberto A.
Serón Arbeloa, Francisco J.
author Chappero, Eugenio J.
author_facet Chappero, Eugenio J.
Guerrero, Roberto A.
Serón Arbeloa, Francisco J.
author_role author
author2 Guerrero, Roberto A.
Serón Arbeloa, Francisco J.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Procesamiento de Imagen Asistida por Computador
image analysis; computer vision; digital image processing
topic Ciencias Informáticas
Procesamiento de Imagen Asistida por Computador
image analysis; computer vision; digital image processing
dc.description.none.fl_txt_mv Depth estimation from monocular images can be retrieved from the perspective distortion. One major e ect of this distortion is that a set of parallel lines in the real world converges into a single point in the image plane. The estimation of the coordinates of the vanishing point can be retrieved directly by di erent ways, like Hough Transform and First derivative approaches. Many of them work on speci c real scene characteristics and often lead to spurious vanishing points. Technology and computational advances suggest that some re nements to these simple techniques or a combination of them could lead to more con dent vanishing point detection than modelling and developing a new complicated ones. In this paper we study the behaviour of two classical approaches, introduce them some improvements and propose a new combinational technique to estimate the location of the vanishing point in an image. The solutions will be described and compared, also through the discussion of the results obtained from their application to real images.
Presentado en el VIII Workshop Computación Gráfica, Imágenes y Visualización (WCGIV)
Red de Universidades con Carreras en Informática (RedUNCI)
description Depth estimation from monocular images can be retrieved from the perspective distortion. One major e ect of this distortion is that a set of parallel lines in the real world converges into a single point in the image plane. The estimation of the coordinates of the vanishing point can be retrieved directly by di erent ways, like Hough Transform and First derivative approaches. Many of them work on speci c real scene characteristics and often lead to spurious vanishing points. Technology and computational advances suggest that some re nements to these simple techniques or a combination of them could lead to more con dent vanishing point detection than modelling and developing a new complicated ones. In this paper we study the behaviour of two classical approaches, introduce them some improvements and propose a new combinational technique to estimate the location of the vanishing point in an image. The solutions will be described and compared, also through the discussion of the results obtained from their application to real images.
publishDate 2010
dc.date.none.fl_str_mv 2010-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/19149
url http://sedici.unlp.edu.ar/handle/10915/19149
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
444-454
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615793975754752
score 13.070432