Dynamical Renormalization Group Approach to the Collective Behavior of Swarms

Autores
Cavagna, Andrea; Di Carlo, Luca; Giardina, Irene; Grandinetti, Luca; Grigera, Tomás Sebastián; Pisegna, Giulia
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the critical behavior of a model with nondissipative couplings aimed at describing the collective behavior of natural swarms, using the dynamical renormalization group under a fixed-network approximation. At one loop, we find a crossover between an unstable fixed point, characterized by a dynamical critical exponent z ¼ d=2, and a stable fixed point with z ¼ 2, a result we confirm through numerical simulations. The crossover is regulated by a length scale given by the ratio between the transport coefficient and the effective friction, so that in finite-size biological systems with low dissipation, dynamics is ruled by the unstable fixed point. In three dimensions this mechanism gives z ¼ 3=2, a value significantly closer to the experimental window, 1.0 ≤ z ≤ 1.3, than the value z ≈ 2 numerically found in fully dissipative models, either at or off equilibrium. This result indicates that nondissipative dynamical couplings are necessary to develop a theory of natural swarms fully consistent with experiments.
Instituto de Física de Líquidos y Sistemas Biológicos
Materia
Física
Biología
Collective behavior
Swarming. active matter
Bose-Einstein condensates
Collective dynamics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/132531

id SEDICI_db657ff953856de0afa46bf36189628d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/132531
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Dynamical Renormalization Group Approach to the Collective Behavior of SwarmsCavagna, AndreaDi Carlo, LucaGiardina, IreneGrandinetti, LucaGrigera, Tomás SebastiánPisegna, GiuliaFísicaBiologíaCollective behaviorSwarming. active matterBose-Einstein condensatesCollective dynamicsWe study the critical behavior of a model with nondissipative couplings aimed at describing the collective behavior of natural swarms, using the dynamical renormalization group under a fixed-network approximation. At one loop, we find a crossover between an unstable fixed point, characterized by a dynamical critical exponent z ¼ d=2, and a stable fixed point with z ¼ 2, a result we confirm through numerical simulations. The crossover is regulated by a length scale given by the ratio between the transport coefficient and the effective friction, so that in finite-size biological systems with low dissipation, dynamics is ruled by the unstable fixed point. In three dimensions this mechanism gives z ¼ 3=2, a value significantly closer to the experimental window, 1.0 ≤ z ≤ 1.3, than the value z ≈ 2 numerically found in fully dissipative models, either at or off equilibrium. This result indicates that nondissipative dynamical couplings are necessary to develop a theory of natural swarms fully consistent with experiments.Instituto de Física de Líquidos y Sistemas Biológicos2019info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/132531enginfo:eu-repo/semantics/altIdentifier/issn/1079-7114info:eu-repo/semantics/altIdentifier/issn/0031-9007info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevlett.123.268001info:eu-repo/semantics/altIdentifier/arxiv/1905.01227info:eu-repo/semantics/altIdentifier/pmid/31951428info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:32:12Zoai:sedici.unlp.edu.ar:10915/132531Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:32:13.106SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
title Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
spellingShingle Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
Cavagna, Andrea
Física
Biología
Collective behavior
Swarming. active matter
Bose-Einstein condensates
Collective dynamics
title_short Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
title_full Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
title_fullStr Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
title_full_unstemmed Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
title_sort Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
dc.creator.none.fl_str_mv Cavagna, Andrea
Di Carlo, Luca
Giardina, Irene
Grandinetti, Luca
Grigera, Tomás Sebastián
Pisegna, Giulia
author Cavagna, Andrea
author_facet Cavagna, Andrea
Di Carlo, Luca
Giardina, Irene
Grandinetti, Luca
Grigera, Tomás Sebastián
Pisegna, Giulia
author_role author
author2 Di Carlo, Luca
Giardina, Irene
Grandinetti, Luca
Grigera, Tomás Sebastián
Pisegna, Giulia
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Física
Biología
Collective behavior
Swarming. active matter
Bose-Einstein condensates
Collective dynamics
topic Física
Biología
Collective behavior
Swarming. active matter
Bose-Einstein condensates
Collective dynamics
dc.description.none.fl_txt_mv We study the critical behavior of a model with nondissipative couplings aimed at describing the collective behavior of natural swarms, using the dynamical renormalization group under a fixed-network approximation. At one loop, we find a crossover between an unstable fixed point, characterized by a dynamical critical exponent z ¼ d=2, and a stable fixed point with z ¼ 2, a result we confirm through numerical simulations. The crossover is regulated by a length scale given by the ratio between the transport coefficient and the effective friction, so that in finite-size biological systems with low dissipation, dynamics is ruled by the unstable fixed point. In three dimensions this mechanism gives z ¼ 3=2, a value significantly closer to the experimental window, 1.0 ≤ z ≤ 1.3, than the value z ≈ 2 numerically found in fully dissipative models, either at or off equilibrium. This result indicates that nondissipative dynamical couplings are necessary to develop a theory of natural swarms fully consistent with experiments.
Instituto de Física de Líquidos y Sistemas Biológicos
description We study the critical behavior of a model with nondissipative couplings aimed at describing the collective behavior of natural swarms, using the dynamical renormalization group under a fixed-network approximation. At one loop, we find a crossover between an unstable fixed point, characterized by a dynamical critical exponent z ¼ d=2, and a stable fixed point with z ¼ 2, a result we confirm through numerical simulations. The crossover is regulated by a length scale given by the ratio between the transport coefficient and the effective friction, so that in finite-size biological systems with low dissipation, dynamics is ruled by the unstable fixed point. In three dimensions this mechanism gives z ¼ 3=2, a value significantly closer to the experimental window, 1.0 ≤ z ≤ 1.3, than the value z ≈ 2 numerically found in fully dissipative models, either at or off equilibrium. This result indicates that nondissipative dynamical couplings are necessary to develop a theory of natural swarms fully consistent with experiments.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/132531
url http://sedici.unlp.edu.ar/handle/10915/132531
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1079-7114
info:eu-repo/semantics/altIdentifier/issn/0031-9007
info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevlett.123.268001
info:eu-repo/semantics/altIdentifier/arxiv/1905.01227
info:eu-repo/semantics/altIdentifier/pmid/31951428
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616201629597696
score 13.070432