Multicapas de óxidos magnéticos con diversas aplicaciones a la espintrónica

Autores
Salcedo Rodríguez, Karen Lizeth
Año de publicación
2017
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Rodríguez Torres, Claudia E.
Pérez Huelani, Silvia
Ramallo López, José Martín
Sacanell, Joaquín
Descripción
El avance tecnológico cada vez más acelerado y con mayores demandas, centra la atención en el desarrollo de nuevos materiales que cumplan con los requerimientos en las áreas de aplicación de interés. Es en este contexto, donde la ciencia de nuevos materiales se convierte en una herramienta de gran apoyo para el desarrollo de nueva tecnología, por medio de la investigación de nuevos compuestos y el análisis de sus propiedades según el método de síntesis. En la búsqueda de nuevos materiales funcionales, los óxidos de metales de transición han sido el foco en los últimos 30 años. Sus propiedades provienen de la interacción entre los iones metales de transición y los iones oxígeno y su sensibilidad a los ángulos de ligadura. Es así, que se pueden obtener materiales con muy diversas propiedades partiendo de una misma familia. Las perovskitas (MBO3) son los sistemas más populares. Compuestos con la misma estructura cristalina pueden resultar superconductores de alta temperatura, ferroelectricos, ferromagnetos semimetálicos, etc. La compatibilidad estructural entre materiales con distintas propiedades hace posible combinar capas de éstos para diseñar heteroestructuras epitaxiales multifuncionales. Además, la extrema sensibilidad de las propiedades físicas a las modificaciones estructurales hace que aparezcan comportamientos inesperados en películas contraídas o expandidas por la intercara entre dos capas adyacentes o por la carga acumulada en dichas regiones debida a la diferencia en la ionicidad de los componentes. Además de las perovskitas, los óxidos con estructura espinela (MB2O4) son también muy atractivos. Pueden ser semimetales ferrimagnéticos (como la magnetita, Fe3O4), aislantes ferrimagnéticos (la mayoría de las ferritas lo son), conductores transparentes (cómo ZnCo2O4), superconductores (LiTi2O4), fermiones pesados (LiV2O4) o multipleferroicos (CoCr2O4). La estructura espinela, es una estructura compleja con muchos grados de libertad (tipos y distribución de cationes, ángulos de enlace con los aniones, etc) que pueden variarse para obtener diferentes funcionalidades. Por esto, el estudio de películas delgadas de estos sistemas es tan intensivo y resta mucho por aprender sobre sus propiedades cuando forman arreglos de bajas dimensiones y su combinación en heteroestructuras. En esta línea, este trabajo de Tesis se enfocó en el estudio de películas delgadas de sistemas basados en ferritas (MFe2O4, M: Zn, Ti, Mg) con el objetivos de: - Estudiar la física relacionada a efectos de superficie e intercara en monocapas y multicapas de óxidos complejos por medio de diferentes técnicas de caracterización tanto estructurales como magneto-electrónicas. - Estudiar la relación entre los defectos inducidos en el crecimiento de los sistemas y las propiedades magnéticas de los mismos. - Obtener materiales semiconductores y ferromagnéticos a temperatura ambiente o ferromagnéticos y semimetálicos que puedan integrarse a dispositivos magnetoeléctricos tales como junturas tunel y filtros de espín, a partir de combinaciones de óxidos complejos sintetizados por diferentes mecanismos de síntesis como pulverización catódica DC, ablación láser. La estructura de este trabajo es la siguiente: En el Capítulo 1 se describen generalidades sobre los sistemas estudiados, los diferentes tipos de magnetismo presentes en las ferritas y la relación entre defectos y magnetismo. En el Capítulo 2, se presentan detalles sobre la fabricación de las muestras y técnicas de caracterización utilizadas. En el Capítulo 3, resultados obtenidos para películas de ferrita de zinc (ZnFe2O4, ZFO), en el 4 los correspondientes a polvos de ZFO, en el Capítulo 5 a la ferrita de magnesio (MgFe2O4, MgFO), en el 6, ferrita de titanio (TiFe2O4, TFO) y en el Capítulo 7 se presenta resultados en multicapas de ZFO y TFO. Finalmente, en el capítulo 8 se dan las conclusiones generales y perspectivas de trabajo futuro.
Doctor en Ciencias Exactas, área Física
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
Materia
Ciencias Exactas
Física
ferritas
nuevos materiales
magnetismo
espintrónica
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/59327

id SEDICI_db1412ba02b84ccc930cfbe67073f985
oai_identifier_str oai:sedici.unlp.edu.ar:10915/59327
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Multicapas de óxidos magnéticos con diversas aplicaciones a la espintrónicaSalcedo Rodríguez, Karen LizethCiencias ExactasFísicaferritasnuevos materialesmagnetismoespintrónicaEl avance tecnológico cada vez más acelerado y con mayores demandas, centra la atención en el desarrollo de nuevos materiales que cumplan con los requerimientos en las áreas de aplicación de interés. Es en este contexto, donde la ciencia de nuevos materiales se convierte en una herramienta de gran apoyo para el desarrollo de nueva tecnología, por medio de la investigación de nuevos compuestos y el análisis de sus propiedades según el método de síntesis. En la búsqueda de nuevos materiales funcionales, los óxidos de metales de transición han sido el foco en los últimos 30 años. Sus propiedades provienen de la interacción entre los iones metales de transición y los iones oxígeno y su sensibilidad a los ángulos de ligadura. Es así, que se pueden obtener materiales con muy diversas propiedades partiendo de una misma familia. Las perovskitas (MBO3) son los sistemas más populares. Compuestos con la misma estructura cristalina pueden resultar superconductores de alta temperatura, ferroelectricos, ferromagnetos semimetálicos, etc. La compatibilidad estructural entre materiales con distintas propiedades hace posible combinar capas de éstos para diseñar heteroestructuras epitaxiales multifuncionales. Además, la extrema sensibilidad de las propiedades físicas a las modificaciones estructurales hace que aparezcan comportamientos inesperados en películas contraídas o expandidas por la intercara entre dos capas adyacentes o por la carga acumulada en dichas regiones debida a la diferencia en la ionicidad de los componentes. Además de las perovskitas, los óxidos con estructura espinela (MB2O4) son también muy atractivos. Pueden ser semimetales ferrimagnéticos (como la magnetita, Fe3O4), aislantes ferrimagnéticos (la mayoría de las ferritas lo son), conductores transparentes (cómo ZnCo2O4), superconductores (LiTi2O4), fermiones pesados (LiV2O4) o multipleferroicos (CoCr2O4). La estructura espinela, es una estructura compleja con muchos grados de libertad (tipos y distribución de cationes, ángulos de enlace con los aniones, etc) que pueden variarse para obtener diferentes funcionalidades. Por esto, el estudio de películas delgadas de estos sistemas es tan intensivo y resta mucho por aprender sobre sus propiedades cuando forman arreglos de bajas dimensiones y su combinación en heteroestructuras. En esta línea, este trabajo de Tesis se enfocó en el estudio de películas delgadas de sistemas basados en ferritas (MFe2O4, M: Zn, Ti, Mg) con el objetivos de: - Estudiar la física relacionada a efectos de superficie e intercara en monocapas y multicapas de óxidos complejos por medio de diferentes técnicas de caracterización tanto estructurales como magneto-electrónicas. - Estudiar la relación entre los defectos inducidos en el crecimiento de los sistemas y las propiedades magnéticas de los mismos. - Obtener materiales semiconductores y ferromagnéticos a temperatura ambiente o ferromagnéticos y semimetálicos que puedan integrarse a dispositivos magnetoeléctricos tales como junturas tunel y filtros de espín, a partir de combinaciones de óxidos complejos sintetizados por diferentes mecanismos de síntesis como pulverización catódica DC, ablación láser. La estructura de este trabajo es la siguiente: En el Capítulo 1 se describen generalidades sobre los sistemas estudiados, los diferentes tipos de magnetismo presentes en las ferritas y la relación entre defectos y magnetismo. En el Capítulo 2, se presentan detalles sobre la fabricación de las muestras y técnicas de caracterización utilizadas. En el Capítulo 3, resultados obtenidos para películas de ferrita de zinc (ZnFe2O4, ZFO), en el 4 los correspondientes a polvos de ZFO, en el Capítulo 5 a la ferrita de magnesio (MgFe2O4, MgFO), en el 6, ferrita de titanio (TiFe2O4, TFO) y en el Capítulo 7 se presenta resultados en multicapas de ZFO y TFO. Finalmente, en el capítulo 8 se dan las conclusiones generales y perspectivas de trabajo futuro.Doctor en Ciencias Exactas, área FísicaUniversidad Nacional de La PlataFacultad de Ciencias ExactasRodríguez Torres, Claudia E.Pérez Huelani, SilviaRamallo López, José MartínSacanell, Joaquín2017-03-20info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/59327https://doi.org/10.35537/10915/59327spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:50:21Zoai:sedici.unlp.edu.ar:10915/59327Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:50:22.261SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Multicapas de óxidos magnéticos con diversas aplicaciones a la espintrónica
title Multicapas de óxidos magnéticos con diversas aplicaciones a la espintrónica
spellingShingle Multicapas de óxidos magnéticos con diversas aplicaciones a la espintrónica
Salcedo Rodríguez, Karen Lizeth
Ciencias Exactas
Física
ferritas
nuevos materiales
magnetismo
espintrónica
title_short Multicapas de óxidos magnéticos con diversas aplicaciones a la espintrónica
title_full Multicapas de óxidos magnéticos con diversas aplicaciones a la espintrónica
title_fullStr Multicapas de óxidos magnéticos con diversas aplicaciones a la espintrónica
title_full_unstemmed Multicapas de óxidos magnéticos con diversas aplicaciones a la espintrónica
title_sort Multicapas de óxidos magnéticos con diversas aplicaciones a la espintrónica
dc.creator.none.fl_str_mv Salcedo Rodríguez, Karen Lizeth
author Salcedo Rodríguez, Karen Lizeth
author_facet Salcedo Rodríguez, Karen Lizeth
author_role author
dc.contributor.none.fl_str_mv Rodríguez Torres, Claudia E.
Pérez Huelani, Silvia
Ramallo López, José Martín
Sacanell, Joaquín
dc.subject.none.fl_str_mv Ciencias Exactas
Física
ferritas
nuevos materiales
magnetismo
espintrónica
topic Ciencias Exactas
Física
ferritas
nuevos materiales
magnetismo
espintrónica
dc.description.none.fl_txt_mv El avance tecnológico cada vez más acelerado y con mayores demandas, centra la atención en el desarrollo de nuevos materiales que cumplan con los requerimientos en las áreas de aplicación de interés. Es en este contexto, donde la ciencia de nuevos materiales se convierte en una herramienta de gran apoyo para el desarrollo de nueva tecnología, por medio de la investigación de nuevos compuestos y el análisis de sus propiedades según el método de síntesis. En la búsqueda de nuevos materiales funcionales, los óxidos de metales de transición han sido el foco en los últimos 30 años. Sus propiedades provienen de la interacción entre los iones metales de transición y los iones oxígeno y su sensibilidad a los ángulos de ligadura. Es así, que se pueden obtener materiales con muy diversas propiedades partiendo de una misma familia. Las perovskitas (MBO3) son los sistemas más populares. Compuestos con la misma estructura cristalina pueden resultar superconductores de alta temperatura, ferroelectricos, ferromagnetos semimetálicos, etc. La compatibilidad estructural entre materiales con distintas propiedades hace posible combinar capas de éstos para diseñar heteroestructuras epitaxiales multifuncionales. Además, la extrema sensibilidad de las propiedades físicas a las modificaciones estructurales hace que aparezcan comportamientos inesperados en películas contraídas o expandidas por la intercara entre dos capas adyacentes o por la carga acumulada en dichas regiones debida a la diferencia en la ionicidad de los componentes. Además de las perovskitas, los óxidos con estructura espinela (MB2O4) son también muy atractivos. Pueden ser semimetales ferrimagnéticos (como la magnetita, Fe3O4), aislantes ferrimagnéticos (la mayoría de las ferritas lo son), conductores transparentes (cómo ZnCo2O4), superconductores (LiTi2O4), fermiones pesados (LiV2O4) o multipleferroicos (CoCr2O4). La estructura espinela, es una estructura compleja con muchos grados de libertad (tipos y distribución de cationes, ángulos de enlace con los aniones, etc) que pueden variarse para obtener diferentes funcionalidades. Por esto, el estudio de películas delgadas de estos sistemas es tan intensivo y resta mucho por aprender sobre sus propiedades cuando forman arreglos de bajas dimensiones y su combinación en heteroestructuras. En esta línea, este trabajo de Tesis se enfocó en el estudio de películas delgadas de sistemas basados en ferritas (MFe2O4, M: Zn, Ti, Mg) con el objetivos de: - Estudiar la física relacionada a efectos de superficie e intercara en monocapas y multicapas de óxidos complejos por medio de diferentes técnicas de caracterización tanto estructurales como magneto-electrónicas. - Estudiar la relación entre los defectos inducidos en el crecimiento de los sistemas y las propiedades magnéticas de los mismos. - Obtener materiales semiconductores y ferromagnéticos a temperatura ambiente o ferromagnéticos y semimetálicos que puedan integrarse a dispositivos magnetoeléctricos tales como junturas tunel y filtros de espín, a partir de combinaciones de óxidos complejos sintetizados por diferentes mecanismos de síntesis como pulverización catódica DC, ablación láser. La estructura de este trabajo es la siguiente: En el Capítulo 1 se describen generalidades sobre los sistemas estudiados, los diferentes tipos de magnetismo presentes en las ferritas y la relación entre defectos y magnetismo. En el Capítulo 2, se presentan detalles sobre la fabricación de las muestras y técnicas de caracterización utilizadas. En el Capítulo 3, resultados obtenidos para películas de ferrita de zinc (ZnFe2O4, ZFO), en el 4 los correspondientes a polvos de ZFO, en el Capítulo 5 a la ferrita de magnesio (MgFe2O4, MgFO), en el 6, ferrita de titanio (TiFe2O4, TFO) y en el Capítulo 7 se presenta resultados en multicapas de ZFO y TFO. Finalmente, en el capítulo 8 se dan las conclusiones generales y perspectivas de trabajo futuro.
Doctor en Ciencias Exactas, área Física
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
description El avance tecnológico cada vez más acelerado y con mayores demandas, centra la atención en el desarrollo de nuevos materiales que cumplan con los requerimientos en las áreas de aplicación de interés. Es en este contexto, donde la ciencia de nuevos materiales se convierte en una herramienta de gran apoyo para el desarrollo de nueva tecnología, por medio de la investigación de nuevos compuestos y el análisis de sus propiedades según el método de síntesis. En la búsqueda de nuevos materiales funcionales, los óxidos de metales de transición han sido el foco en los últimos 30 años. Sus propiedades provienen de la interacción entre los iones metales de transición y los iones oxígeno y su sensibilidad a los ángulos de ligadura. Es así, que se pueden obtener materiales con muy diversas propiedades partiendo de una misma familia. Las perovskitas (MBO3) son los sistemas más populares. Compuestos con la misma estructura cristalina pueden resultar superconductores de alta temperatura, ferroelectricos, ferromagnetos semimetálicos, etc. La compatibilidad estructural entre materiales con distintas propiedades hace posible combinar capas de éstos para diseñar heteroestructuras epitaxiales multifuncionales. Además, la extrema sensibilidad de las propiedades físicas a las modificaciones estructurales hace que aparezcan comportamientos inesperados en películas contraídas o expandidas por la intercara entre dos capas adyacentes o por la carga acumulada en dichas regiones debida a la diferencia en la ionicidad de los componentes. Además de las perovskitas, los óxidos con estructura espinela (MB2O4) son también muy atractivos. Pueden ser semimetales ferrimagnéticos (como la magnetita, Fe3O4), aislantes ferrimagnéticos (la mayoría de las ferritas lo son), conductores transparentes (cómo ZnCo2O4), superconductores (LiTi2O4), fermiones pesados (LiV2O4) o multipleferroicos (CoCr2O4). La estructura espinela, es una estructura compleja con muchos grados de libertad (tipos y distribución de cationes, ángulos de enlace con los aniones, etc) que pueden variarse para obtener diferentes funcionalidades. Por esto, el estudio de películas delgadas de estos sistemas es tan intensivo y resta mucho por aprender sobre sus propiedades cuando forman arreglos de bajas dimensiones y su combinación en heteroestructuras. En esta línea, este trabajo de Tesis se enfocó en el estudio de películas delgadas de sistemas basados en ferritas (MFe2O4, M: Zn, Ti, Mg) con el objetivos de: - Estudiar la física relacionada a efectos de superficie e intercara en monocapas y multicapas de óxidos complejos por medio de diferentes técnicas de caracterización tanto estructurales como magneto-electrónicas. - Estudiar la relación entre los defectos inducidos en el crecimiento de los sistemas y las propiedades magnéticas de los mismos. - Obtener materiales semiconductores y ferromagnéticos a temperatura ambiente o ferromagnéticos y semimetálicos que puedan integrarse a dispositivos magnetoeléctricos tales como junturas tunel y filtros de espín, a partir de combinaciones de óxidos complejos sintetizados por diferentes mecanismos de síntesis como pulverización catódica DC, ablación láser. La estructura de este trabajo es la siguiente: En el Capítulo 1 se describen generalidades sobre los sistemas estudiados, los diferentes tipos de magnetismo presentes en las ferritas y la relación entre defectos y magnetismo. En el Capítulo 2, se presentan detalles sobre la fabricación de las muestras y técnicas de caracterización utilizadas. En el Capítulo 3, resultados obtenidos para películas de ferrita de zinc (ZnFe2O4, ZFO), en el 4 los correspondientes a polvos de ZFO, en el Capítulo 5 a la ferrita de magnesio (MgFe2O4, MgFO), en el 6, ferrita de titanio (TiFe2O4, TFO) y en el Capítulo 7 se presenta resultados en multicapas de ZFO y TFO. Finalmente, en el capítulo 8 se dan las conclusiones generales y perspectivas de trabajo futuro.
publishDate 2017
dc.date.none.fl_str_mv 2017-03-20
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/59327
https://doi.org/10.35537/10915/59327
url http://sedici.unlp.edu.ar/handle/10915/59327
https://doi.org/10.35537/10915/59327
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532289075576832
score 13.001348