Métricas de Invarianza Transformacional para Redes Neuronales
- Autores
- Quiroga, Facundo Manuel
- Año de publicación
- 2020
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Las Redes Neuronales son los modelos de aprendizaje automático con mejor desempeño en la actualidad en una gran variedad de problemas. En particular, las Redes Convolucionales, es decir, Redes Neuronales que utilizan capas convolucionales, son el estado del arte en la mayoría de los problemas de visión por computadora. Muchos de los problemas para los cuales las Redes Convolucionales son el estado del arte requieren que los modelos se comporten de cierta manera ante transformaciones de su entrada. Existen dos propiedades fundamentales que capturan dicho requerimiento; la invarianza y la equivarianza. La invarianza nos dice que la salida del modelo no es afectado por las transformaciones. La equivarianza permite que la salida sea afectada, pero de una manera controlada y útil. Si bien los modelos tradicionales de Redes Convolucionales son equivariantes a la traslación por diseño, no son ni invariantes a dicha transformación ni equivariantes a otras en los escenarios usuales de entrenamiento y uso. Existen dos opciones principales para otorgar invarianza o equivarianza a un modelo de red neuronal. La tradicional ha sido modificar el modelo para dotarlo de esas propiedades. La otra opción es entrenarlo con aumentación de datos utilizando como transformaciones el mismo conjunto al que se desea la equivarianza. No obstante, no está claro cómo los modelos adquieren estas propiedades, tanto al usar aumentación de datos como al modificar el modelo. Tampoco está claro como las modificaciones de modelos afectan la eficiencia y el poder de representación de los mismos. Más aún, en los modelos tradicionales tampoco es conocido cómo se adquieren dichas propiedades con aumentación de datos, así como cuál es la mejor estrategia para aumentar los datos con este fin. Esta línea de investigación busca contribuir al entendimiento y mejora de la equivarianza de los modelos de redes neuronales, en particular aplicados a la clasificación de formas de mano para la lengua de seña y otros tipos de gestos mediante modelos de redes convolucionales.
Carrera: Doctorado en Ciencias Informáticas Tipo de beca: Posdoctoral Año de inicio de beca: 2020 Año de finalización de beca: 2022 Organismo: UNLP Apellido, Nombre del Director/a/e: Lanzarini, Laura Cristina Tipo de investigación: Aplicada
Facultad de Informática
Instituto de Investigación en Informática - Materia
-
Ciencias Informáticas
Redes neuronales
Invarianza
Equivarianza
Métrica
Neural networks
Invariance
Equivariance
Measure - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/113907
Ver los metadatos del registro completo
id |
SEDICI_da6ac937e543a5059459c7dc3f2a1076 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/113907 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Métricas de Invarianza Transformacional para Redes NeuronalesTransformational Invariance for Neural NetworksQuiroga, Facundo ManuelCiencias InformáticasRedes neuronalesInvarianzaEquivarianzaMétricaNeural networksInvarianceEquivarianceMeasureLas Redes Neuronales son los modelos de aprendizaje automático con mejor desempeño en la actualidad en una gran variedad de problemas. En particular, las Redes Convolucionales, es decir, Redes Neuronales que utilizan capas convolucionales, son el estado del arte en la mayoría de los problemas de visión por computadora. Muchos de los problemas para los cuales las Redes Convolucionales son el estado del arte requieren que los modelos se comporten de cierta manera ante transformaciones de su entrada. Existen dos propiedades fundamentales que capturan dicho requerimiento; la invarianza y la equivarianza. La invarianza nos dice que la salida del modelo no es afectado por las transformaciones. La equivarianza permite que la salida sea afectada, pero de una manera controlada y útil. Si bien los modelos tradicionales de Redes Convolucionales son equivariantes a la traslación por diseño, no son ni invariantes a dicha transformación ni equivariantes a otras en los escenarios usuales de entrenamiento y uso. Existen dos opciones principales para otorgar invarianza o equivarianza a un modelo de red neuronal. La tradicional ha sido modificar el modelo para dotarlo de esas propiedades. La otra opción es entrenarlo con aumentación de datos utilizando como transformaciones el mismo conjunto al que se desea la equivarianza. No obstante, no está claro cómo los modelos adquieren estas propiedades, tanto al usar aumentación de datos como al modificar el modelo. Tampoco está claro como las modificaciones de modelos afectan la eficiencia y el poder de representación de los mismos. Más aún, en los modelos tradicionales tampoco es conocido cómo se adquieren dichas propiedades con aumentación de datos, así como cuál es la mejor estrategia para aumentar los datos con este fin. Esta línea de investigación busca contribuir al entendimiento y mejora de la equivarianza de los modelos de redes neuronales, en particular aplicados a la clasificación de formas de mano para la lengua de seña y otros tipos de gestos mediante modelos de redes convolucionales.Carrera: Doctorado en Ciencias Informáticas Tipo de beca: Posdoctoral Año de inicio de beca: 2020 Año de finalización de beca: 2022 Organismo: UNLP Apellido, Nombre del Director/a/e: Lanzarini, Laura Cristina Tipo de investigación: AplicadaFacultad de InformáticaInstituto de Investigación en Informática2020-11-12info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaimage/jpeghttp://sedici.unlp.edu.ar/handle/10915/113907spainfo:eu-repo/semantics/altIdentifier/url/https://congresos.unlp.edu.ar/ebec2020/facundo-quirogainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:26:29Zoai:sedici.unlp.edu.ar:10915/113907Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:26:29.875SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Métricas de Invarianza Transformacional para Redes Neuronales Transformational Invariance for Neural Networks |
title |
Métricas de Invarianza Transformacional para Redes Neuronales |
spellingShingle |
Métricas de Invarianza Transformacional para Redes Neuronales Quiroga, Facundo Manuel Ciencias Informáticas Redes neuronales Invarianza Equivarianza Métrica Neural networks Invariance Equivariance Measure |
title_short |
Métricas de Invarianza Transformacional para Redes Neuronales |
title_full |
Métricas de Invarianza Transformacional para Redes Neuronales |
title_fullStr |
Métricas de Invarianza Transformacional para Redes Neuronales |
title_full_unstemmed |
Métricas de Invarianza Transformacional para Redes Neuronales |
title_sort |
Métricas de Invarianza Transformacional para Redes Neuronales |
dc.creator.none.fl_str_mv |
Quiroga, Facundo Manuel |
author |
Quiroga, Facundo Manuel |
author_facet |
Quiroga, Facundo Manuel |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Redes neuronales Invarianza Equivarianza Métrica Neural networks Invariance Equivariance Measure |
topic |
Ciencias Informáticas Redes neuronales Invarianza Equivarianza Métrica Neural networks Invariance Equivariance Measure |
dc.description.none.fl_txt_mv |
Las Redes Neuronales son los modelos de aprendizaje automático con mejor desempeño en la actualidad en una gran variedad de problemas. En particular, las Redes Convolucionales, es decir, Redes Neuronales que utilizan capas convolucionales, son el estado del arte en la mayoría de los problemas de visión por computadora. Muchos de los problemas para los cuales las Redes Convolucionales son el estado del arte requieren que los modelos se comporten de cierta manera ante transformaciones de su entrada. Existen dos propiedades fundamentales que capturan dicho requerimiento; la invarianza y la equivarianza. La invarianza nos dice que la salida del modelo no es afectado por las transformaciones. La equivarianza permite que la salida sea afectada, pero de una manera controlada y útil. Si bien los modelos tradicionales de Redes Convolucionales son equivariantes a la traslación por diseño, no son ni invariantes a dicha transformación ni equivariantes a otras en los escenarios usuales de entrenamiento y uso. Existen dos opciones principales para otorgar invarianza o equivarianza a un modelo de red neuronal. La tradicional ha sido modificar el modelo para dotarlo de esas propiedades. La otra opción es entrenarlo con aumentación de datos utilizando como transformaciones el mismo conjunto al que se desea la equivarianza. No obstante, no está claro cómo los modelos adquieren estas propiedades, tanto al usar aumentación de datos como al modificar el modelo. Tampoco está claro como las modificaciones de modelos afectan la eficiencia y el poder de representación de los mismos. Más aún, en los modelos tradicionales tampoco es conocido cómo se adquieren dichas propiedades con aumentación de datos, así como cuál es la mejor estrategia para aumentar los datos con este fin. Esta línea de investigación busca contribuir al entendimiento y mejora de la equivarianza de los modelos de redes neuronales, en particular aplicados a la clasificación de formas de mano para la lengua de seña y otros tipos de gestos mediante modelos de redes convolucionales. Carrera: Doctorado en Ciencias Informáticas Tipo de beca: Posdoctoral Año de inicio de beca: 2020 Año de finalización de beca: 2022 Organismo: UNLP Apellido, Nombre del Director/a/e: Lanzarini, Laura Cristina Tipo de investigación: Aplicada Facultad de Informática Instituto de Investigación en Informática |
description |
Las Redes Neuronales son los modelos de aprendizaje automático con mejor desempeño en la actualidad en una gran variedad de problemas. En particular, las Redes Convolucionales, es decir, Redes Neuronales que utilizan capas convolucionales, son el estado del arte en la mayoría de los problemas de visión por computadora. Muchos de los problemas para los cuales las Redes Convolucionales son el estado del arte requieren que los modelos se comporten de cierta manera ante transformaciones de su entrada. Existen dos propiedades fundamentales que capturan dicho requerimiento; la invarianza y la equivarianza. La invarianza nos dice que la salida del modelo no es afectado por las transformaciones. La equivarianza permite que la salida sea afectada, pero de una manera controlada y útil. Si bien los modelos tradicionales de Redes Convolucionales son equivariantes a la traslación por diseño, no son ni invariantes a dicha transformación ni equivariantes a otras en los escenarios usuales de entrenamiento y uso. Existen dos opciones principales para otorgar invarianza o equivarianza a un modelo de red neuronal. La tradicional ha sido modificar el modelo para dotarlo de esas propiedades. La otra opción es entrenarlo con aumentación de datos utilizando como transformaciones el mismo conjunto al que se desea la equivarianza. No obstante, no está claro cómo los modelos adquieren estas propiedades, tanto al usar aumentación de datos como al modificar el modelo. Tampoco está claro como las modificaciones de modelos afectan la eficiencia y el poder de representación de los mismos. Más aún, en los modelos tradicionales tampoco es conocido cómo se adquieren dichas propiedades con aumentación de datos, así como cuál es la mejor estrategia para aumentar los datos con este fin. Esta línea de investigación busca contribuir al entendimiento y mejora de la equivarianza de los modelos de redes neuronales, en particular aplicados a la clasificación de formas de mano para la lengua de seña y otros tipos de gestos mediante modelos de redes convolucionales. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/113907 |
url |
http://sedici.unlp.edu.ar/handle/10915/113907 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://congresos.unlp.edu.ar/ebec2020/facundo-quiroga |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
image/jpeg |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616142886273024 |
score |
13.070432 |