Building blocks in hierarchical clustering scenarios and their connection with damped Lyα systems

Autores
Cora, Sofía Alejandra; Tissera, Patricia Beatriz; Lambas, Diego G.; Mosconi, Mirta B.
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We carried out a comprehensive analysis of the chemical properties of the interstellar medium (ISM) and the stellar population (SP) of current normal galaxies and their progenitors in a hierarchical clustering scenario. We compared the results with observations of damped Lyman- α systems (DLAs) under the hypothesis that, at least, part of the observed DLAs could originate in the building blocks of present-day normal galaxies. We used a hydrodynamical cosmological code which includes star formation and chemical enrichment. Galaxy-like objects are identified at z = 0 and then followed back in time. Random lines of sight (LOS) are drawn through these structures in order to mimic damped Lyman-α systems. We then analysed the chemical properties of the ISM and SP along the LOS. We found that the progenitors of current galaxies in the field with mean L < 0.5L* and virial circular velocity of 100-250 km s-1 could be the associated DLA galaxies. For these systems we detected a trend for (L/L*) to increase with redshift. We found moderate metallicity evolution for [Zn/H], [Fe/H] and [Si/H]. However, when we applied the observational filter suggested by Boissé et al. (1998) in order to restrict the sample to the observed limits in densities and metallicities, we found mild evolution consistent with observational results that include dust corrections. [Si/Fe] and [S/Fe] show weak α-enhancement in agreement with observations corrected by dust depletion. We found α/Fe in the ISM and SP to have more homogeneous abundances than [Fe/H] and [Zn/H]. In our models, the global metallicity evolution is driven by the high metallicity and high column density simulated DLAs, which have low impact parameters (b < 5 kpc), and SPs with more than 108 M⊙. Our results suggest that geometrical effects could be the mechanism responsible for the non-detectability of high-metallicity and high-column-density DLAs. We found sub-DLAs to map preferentially the outskirts of the simulated DLA galaxies. Hence, they can contribute to the study of the metallicity of the galactic structure as a function of redshift. An analysis of the metallicity content of the ISMs and SPs of the galaxy-like objects as a function of redshift shows the formation of a central stellar mass concentration with nearly solar metallicity at all redshifts while stars in the outer parts of these objects have lower metallicities. The gas content becomes enriched progressively with redshift and at all radii. The abundance properties of the galaxy-like objects and the simulated DLAs are the results of the contribution of type la and II Supernovae and gas infall from the dark matter haloes with a timing settled by their particular evolution history in a hierarchical clustering scenario. Our results suggest that the mild evolution detected in the observations could arise from a conspiracy of all of these processes.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Cosmology: theory
Galaxies: abundances
Galaxies: evolution
Galaxies: formation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/84496

id SEDICI_d64dc9678ccde1a8b86feafcb35e64e6
oai_identifier_str oai:sedici.unlp.edu.ar:10915/84496
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Building blocks in hierarchical clustering scenarios and their connection with damped Lyα systemsCora, Sofía AlejandraTissera, Patricia BeatrizLambas, Diego G.Mosconi, Mirta B.Ciencias AstronómicasCosmology: theoryGalaxies: abundancesGalaxies: evolutionGalaxies: formationWe carried out a comprehensive analysis of the chemical properties of the interstellar medium (ISM) and the stellar population (SP) of current normal galaxies and their progenitors in a hierarchical clustering scenario. We compared the results with observations of damped Lyman- α systems (DLAs) under the hypothesis that, at least, part of the observed DLAs could originate in the building blocks of present-day normal galaxies. We used a hydrodynamical cosmological code which includes star formation and chemical enrichment. Galaxy-like objects are identified at z = 0 and then followed back in time. Random lines of sight (LOS) are drawn through these structures in order to mimic damped Lyman-α systems. We then analysed the chemical properties of the ISM and SP along the LOS. We found that the progenitors of current galaxies in the field with mean L < 0.5L* and virial circular velocity of 100-250 km s<SUP>-1</SUP> could be the associated DLA galaxies. For these systems we detected a trend for (L/L*) to increase with redshift. We found moderate metallicity evolution for [Zn/H], [Fe/H] and [Si/H]. However, when we applied the observational filter suggested by Boissé et al. (1998) in order to restrict the sample to the observed limits in densities and metallicities, we found mild evolution consistent with observational results that include dust corrections. [Si/Fe] and [S/Fe] show weak α-enhancement in agreement with observations corrected by dust depletion. We found α/Fe in the ISM and SP to have more homogeneous abundances than [Fe/H] and [Zn/H]. In our models, the global metallicity evolution is driven by the high metallicity and high column density simulated DLAs, which have low impact parameters (b < 5 kpc), and SPs with more than 10<SUP>8</SUP> M⊙. Our results suggest that geometrical effects could be the mechanism responsible for the non-detectability of high-metallicity and high-column-density DLAs. We found sub-DLAs to map preferentially the outskirts of the simulated DLA galaxies. Hence, they can contribute to the study of the metallicity of the galactic structure as a function of redshift. An analysis of the metallicity content of the ISMs and SPs of the galaxy-like objects as a function of redshift shows the formation of a central stellar mass concentration with nearly solar metallicity at all redshifts while stars in the outer parts of these objects have lower metallicities. The gas content becomes enriched progressively with redshift and at all radii. The abundance properties of the galaxy-like objects and the simulated DLAs are the results of the contribution of type la and II Supernovae and gas infall from the dark matter haloes with a timing settled by their particular evolution history in a hierarchical clustering scenario. Our results suggest that the mild evolution detected in the observations could arise from a conspiracy of all of these processes.Facultad de Ciencias Astronómicas y Geofísicas2003info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf959-970http://sedici.unlp.edu.ar/handle/10915/84496enginfo:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/doi/10.1046/j.1365-8711.2003.06738.xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:18:54Zoai:sedici.unlp.edu.ar:10915/84496Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:18:55.135SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Building blocks in hierarchical clustering scenarios and their connection with damped Lyα systems
title Building blocks in hierarchical clustering scenarios and their connection with damped Lyα systems
spellingShingle Building blocks in hierarchical clustering scenarios and their connection with damped Lyα systems
Cora, Sofía Alejandra
Ciencias Astronómicas
Cosmology: theory
Galaxies: abundances
Galaxies: evolution
Galaxies: formation
title_short Building blocks in hierarchical clustering scenarios and their connection with damped Lyα systems
title_full Building blocks in hierarchical clustering scenarios and their connection with damped Lyα systems
title_fullStr Building blocks in hierarchical clustering scenarios and their connection with damped Lyα systems
title_full_unstemmed Building blocks in hierarchical clustering scenarios and their connection with damped Lyα systems
title_sort Building blocks in hierarchical clustering scenarios and their connection with damped Lyα systems
dc.creator.none.fl_str_mv Cora, Sofía Alejandra
Tissera, Patricia Beatriz
Lambas, Diego G.
Mosconi, Mirta B.
author Cora, Sofía Alejandra
author_facet Cora, Sofía Alejandra
Tissera, Patricia Beatriz
Lambas, Diego G.
Mosconi, Mirta B.
author_role author
author2 Tissera, Patricia Beatriz
Lambas, Diego G.
Mosconi, Mirta B.
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Cosmology: theory
Galaxies: abundances
Galaxies: evolution
Galaxies: formation
topic Ciencias Astronómicas
Cosmology: theory
Galaxies: abundances
Galaxies: evolution
Galaxies: formation
dc.description.none.fl_txt_mv We carried out a comprehensive analysis of the chemical properties of the interstellar medium (ISM) and the stellar population (SP) of current normal galaxies and their progenitors in a hierarchical clustering scenario. We compared the results with observations of damped Lyman- α systems (DLAs) under the hypothesis that, at least, part of the observed DLAs could originate in the building blocks of present-day normal galaxies. We used a hydrodynamical cosmological code which includes star formation and chemical enrichment. Galaxy-like objects are identified at z = 0 and then followed back in time. Random lines of sight (LOS) are drawn through these structures in order to mimic damped Lyman-α systems. We then analysed the chemical properties of the ISM and SP along the LOS. We found that the progenitors of current galaxies in the field with mean L < 0.5L* and virial circular velocity of 100-250 km s<SUP>-1</SUP> could be the associated DLA galaxies. For these systems we detected a trend for (L/L*) to increase with redshift. We found moderate metallicity evolution for [Zn/H], [Fe/H] and [Si/H]. However, when we applied the observational filter suggested by Boissé et al. (1998) in order to restrict the sample to the observed limits in densities and metallicities, we found mild evolution consistent with observational results that include dust corrections. [Si/Fe] and [S/Fe] show weak α-enhancement in agreement with observations corrected by dust depletion. We found α/Fe in the ISM and SP to have more homogeneous abundances than [Fe/H] and [Zn/H]. In our models, the global metallicity evolution is driven by the high metallicity and high column density simulated DLAs, which have low impact parameters (b < 5 kpc), and SPs with more than 10<SUP>8</SUP> M⊙. Our results suggest that geometrical effects could be the mechanism responsible for the non-detectability of high-metallicity and high-column-density DLAs. We found sub-DLAs to map preferentially the outskirts of the simulated DLA galaxies. Hence, they can contribute to the study of the metallicity of the galactic structure as a function of redshift. An analysis of the metallicity content of the ISMs and SPs of the galaxy-like objects as a function of redshift shows the formation of a central stellar mass concentration with nearly solar metallicity at all redshifts while stars in the outer parts of these objects have lower metallicities. The gas content becomes enriched progressively with redshift and at all radii. The abundance properties of the galaxy-like objects and the simulated DLAs are the results of the contribution of type la and II Supernovae and gas infall from the dark matter haloes with a timing settled by their particular evolution history in a hierarchical clustering scenario. Our results suggest that the mild evolution detected in the observations could arise from a conspiracy of all of these processes.
Facultad de Ciencias Astronómicas y Geofísicas
description We carried out a comprehensive analysis of the chemical properties of the interstellar medium (ISM) and the stellar population (SP) of current normal galaxies and their progenitors in a hierarchical clustering scenario. We compared the results with observations of damped Lyman- α systems (DLAs) under the hypothesis that, at least, part of the observed DLAs could originate in the building blocks of present-day normal galaxies. We used a hydrodynamical cosmological code which includes star formation and chemical enrichment. Galaxy-like objects are identified at z = 0 and then followed back in time. Random lines of sight (LOS) are drawn through these structures in order to mimic damped Lyman-α systems. We then analysed the chemical properties of the ISM and SP along the LOS. We found that the progenitors of current galaxies in the field with mean L < 0.5L* and virial circular velocity of 100-250 km s<SUP>-1</SUP> could be the associated DLA galaxies. For these systems we detected a trend for (L/L*) to increase with redshift. We found moderate metallicity evolution for [Zn/H], [Fe/H] and [Si/H]. However, when we applied the observational filter suggested by Boissé et al. (1998) in order to restrict the sample to the observed limits in densities and metallicities, we found mild evolution consistent with observational results that include dust corrections. [Si/Fe] and [S/Fe] show weak α-enhancement in agreement with observations corrected by dust depletion. We found α/Fe in the ISM and SP to have more homogeneous abundances than [Fe/H] and [Zn/H]. In our models, the global metallicity evolution is driven by the high metallicity and high column density simulated DLAs, which have low impact parameters (b < 5 kpc), and SPs with more than 10<SUP>8</SUP> M⊙. Our results suggest that geometrical effects could be the mechanism responsible for the non-detectability of high-metallicity and high-column-density DLAs. We found sub-DLAs to map preferentially the outskirts of the simulated DLA galaxies. Hence, they can contribute to the study of the metallicity of the galactic structure as a function of redshift. An analysis of the metallicity content of the ISMs and SPs of the galaxy-like objects as a function of redshift shows the formation of a central stellar mass concentration with nearly solar metallicity at all redshifts while stars in the outer parts of these objects have lower metallicities. The gas content becomes enriched progressively with redshift and at all radii. The abundance properties of the galaxy-like objects and the simulated DLAs are the results of the contribution of type la and II Supernovae and gas infall from the dark matter haloes with a timing settled by their particular evolution history in a hierarchical clustering scenario. Our results suggest that the mild evolution detected in the observations could arise from a conspiracy of all of these processes.
publishDate 2003
dc.date.none.fl_str_mv 2003
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/84496
url http://sedici.unlp.edu.ar/handle/10915/84496
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0035-8711
info:eu-repo/semantics/altIdentifier/doi/10.1046/j.1365-8711.2003.06738.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
959-970
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842904173868220416
score 12.993085