Novel vacuum conditions in inflationary collapse models
- Autores
- Bengochea, Gabriel R.; León, Gabriel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Within the framework of inflationary models that incorporate a spontaneous reduction of the wave function for the emergence of the seeds of cosmic structure, we study the effects on the primordial scalar power spectrum by choosing a novel initial quantum state that characterizes the perturbations of the inflaton. Specifically, we investigate under which conditions one can recover an essentially scale free spectrum of primordial inhomogeneities when the standard Bunch–Davies vacuum is replaced by another one that minimizes the renormalized stress–energy tensor via a Hadamard procedure. We think that this new prescription for selecting the vacuum state is better suited for the self-induced collapse proposal than the traditional one in the semiclassical gravity picture. We show that the parametrization for the time of collapse, considered in previous works, is maintained. Also, we obtain an angular spectrum for the CMB temperature anisotropies consistent with the one that best fits the observational data. Therefore, we conclude that the collapse mechanism might be of a more fundamental character than previously suspected.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
Cosmology
Inflation
Quantum cosmology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/87264
Ver los metadatos del registro completo
id |
SEDICI_d64c179ae9865b7888cce464efc8e591 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/87264 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Novel vacuum conditions in inflationary collapse modelsBengochea, Gabriel R.León, GabrielCiencias AstronómicasCosmologyInflationQuantum cosmologyWithin the framework of inflationary models that incorporate a spontaneous reduction of the wave function for the emergence of the seeds of cosmic structure, we study the effects on the primordial scalar power spectrum by choosing a novel initial quantum state that characterizes the perturbations of the inflaton. Specifically, we investigate under which conditions one can recover an essentially scale free spectrum of primordial inhomogeneities when the standard Bunch–Davies vacuum is replaced by another one that minimizes the renormalized stress–energy tensor via a Hadamard procedure. We think that this new prescription for selecting the vacuum state is better suited for the self-induced collapse proposal than the traditional one in the semiclassical gravity picture. We show that the parametrization for the time of collapse, considered in previous works, is maintained. Also, we obtain an angular spectrum for the CMB temperature anisotropies consistent with the one that best fits the observational data. Therefore, we conclude that the collapse mechanism might be of a more fundamental character than previously suspected.Facultad de Ciencias Astronómicas y Geofísicas2017info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf338-350http://sedici.unlp.edu.ar/handle/10915/87264enginfo:eu-repo/semantics/altIdentifier/issn/0370-2693info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2017.09.085info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:17:09Zoai:sedici.unlp.edu.ar:10915/87264Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:17:10.247SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Novel vacuum conditions in inflationary collapse models |
title |
Novel vacuum conditions in inflationary collapse models |
spellingShingle |
Novel vacuum conditions in inflationary collapse models Bengochea, Gabriel R. Ciencias Astronómicas Cosmology Inflation Quantum cosmology |
title_short |
Novel vacuum conditions in inflationary collapse models |
title_full |
Novel vacuum conditions in inflationary collapse models |
title_fullStr |
Novel vacuum conditions in inflationary collapse models |
title_full_unstemmed |
Novel vacuum conditions in inflationary collapse models |
title_sort |
Novel vacuum conditions in inflationary collapse models |
dc.creator.none.fl_str_mv |
Bengochea, Gabriel R. León, Gabriel |
author |
Bengochea, Gabriel R. |
author_facet |
Bengochea, Gabriel R. León, Gabriel |
author_role |
author |
author2 |
León, Gabriel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Cosmology Inflation Quantum cosmology |
topic |
Ciencias Astronómicas Cosmology Inflation Quantum cosmology |
dc.description.none.fl_txt_mv |
Within the framework of inflationary models that incorporate a spontaneous reduction of the wave function for the emergence of the seeds of cosmic structure, we study the effects on the primordial scalar power spectrum by choosing a novel initial quantum state that characterizes the perturbations of the inflaton. Specifically, we investigate under which conditions one can recover an essentially scale free spectrum of primordial inhomogeneities when the standard Bunch–Davies vacuum is replaced by another one that minimizes the renormalized stress–energy tensor via a Hadamard procedure. We think that this new prescription for selecting the vacuum state is better suited for the self-induced collapse proposal than the traditional one in the semiclassical gravity picture. We show that the parametrization for the time of collapse, considered in previous works, is maintained. Also, we obtain an angular spectrum for the CMB temperature anisotropies consistent with the one that best fits the observational data. Therefore, we conclude that the collapse mechanism might be of a more fundamental character than previously suspected. Facultad de Ciencias Astronómicas y Geofísicas |
description |
Within the framework of inflationary models that incorporate a spontaneous reduction of the wave function for the emergence of the seeds of cosmic structure, we study the effects on the primordial scalar power spectrum by choosing a novel initial quantum state that characterizes the perturbations of the inflaton. Specifically, we investigate under which conditions one can recover an essentially scale free spectrum of primordial inhomogeneities when the standard Bunch–Davies vacuum is replaced by another one that minimizes the renormalized stress–energy tensor via a Hadamard procedure. We think that this new prescription for selecting the vacuum state is better suited for the self-induced collapse proposal than the traditional one in the semiclassical gravity picture. We show that the parametrization for the time of collapse, considered in previous works, is maintained. Also, we obtain an angular spectrum for the CMB temperature anisotropies consistent with the one that best fits the observational data. Therefore, we conclude that the collapse mechanism might be of a more fundamental character than previously suspected. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/87264 |
url |
http://sedici.unlp.edu.ar/handle/10915/87264 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0370-2693 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physletb.2017.09.085 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 338-350 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616044720685056 |
score |
13.070432 |