Center selection techniques for metric indexes

Autores
Mendoza Alric, Cristian; Herrera, Norma Edith
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The metric spaces model formalizes the similarity search concept in nontraditional databases. The goal is to build an index designed to save distance computations when answering similarity queries later. A large class of algorithms to build the index are based on partitioning the space in zones as compact as possible. Each zone stores a representative point, called center, and a few extra data that allow to discard the entire zone at query time without measuring the actual distance between the elements of the zone and the query object. The way in which the centers are selected affects the performance of the algorithm. In this paper, we introduce two new center selection techniques for compact partition based indexes. These techniques were evaluated using the Geometric Near-neighbor Access Tree (GNAT). We experimentally showed that they achieve good performance.
Facultad de Informática
Materia
Ciencias Informáticas
Indexing methods
Base de Datos
centers selection
metric spaces
similarity search
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9535

id SEDICI_d433cc2e8c8f186407345c13f2bf7bd4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9535
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Center selection techniques for metric indexesMendoza Alric, CristianHerrera, Norma EdithCiencias InformáticasIndexing methodsBase de Datoscenters selectionmetric spacessimilarity searchThe metric spaces model formalizes the similarity search concept in nontraditional databases. The goal is to build an index designed to save distance computations when answering similarity queries later. A large class of algorithms to build the index are based on partitioning the space in zones as compact as possible. Each zone stores a representative point, called center, and a few extra data that allow to discard the entire zone at query time without measuring the actual distance between the elements of the zone and the query object. The way in which the centers are selected affects the performance of the algorithm. In this paper, we introduce two new center selection techniques for compact partition based indexes. These techniques were evaluated using the Geometric Near-neighbor Access Tree (GNAT). We experimentally showed that they achieve good performance.Facultad de Informática2007-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf98-104http://sedici.unlp.edu.ar/handle/10915/9535enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-16.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9535Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:44.314SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Center selection techniques for metric indexes
title Center selection techniques for metric indexes
spellingShingle Center selection techniques for metric indexes
Mendoza Alric, Cristian
Ciencias Informáticas
Indexing methods
Base de Datos
centers selection
metric spaces
similarity search
title_short Center selection techniques for metric indexes
title_full Center selection techniques for metric indexes
title_fullStr Center selection techniques for metric indexes
title_full_unstemmed Center selection techniques for metric indexes
title_sort Center selection techniques for metric indexes
dc.creator.none.fl_str_mv Mendoza Alric, Cristian
Herrera, Norma Edith
author Mendoza Alric, Cristian
author_facet Mendoza Alric, Cristian
Herrera, Norma Edith
author_role author
author2 Herrera, Norma Edith
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Indexing methods
Base de Datos
centers selection
metric spaces
similarity search
topic Ciencias Informáticas
Indexing methods
Base de Datos
centers selection
metric spaces
similarity search
dc.description.none.fl_txt_mv The metric spaces model formalizes the similarity search concept in nontraditional databases. The goal is to build an index designed to save distance computations when answering similarity queries later. A large class of algorithms to build the index are based on partitioning the space in zones as compact as possible. Each zone stores a representative point, called center, and a few extra data that allow to discard the entire zone at query time without measuring the actual distance between the elements of the zone and the query object. The way in which the centers are selected affects the performance of the algorithm. In this paper, we introduce two new center selection techniques for compact partition based indexes. These techniques were evaluated using the Geometric Near-neighbor Access Tree (GNAT). We experimentally showed that they achieve good performance.
Facultad de Informática
description The metric spaces model formalizes the similarity search concept in nontraditional databases. The goal is to build an index designed to save distance computations when answering similarity queries later. A large class of algorithms to build the index are based on partitioning the space in zones as compact as possible. Each zone stores a representative point, called center, and a few extra data that allow to discard the entire zone at query time without measuring the actual distance between the elements of the zone and the query object. The way in which the centers are selected affects the performance of the algorithm. In this paper, we introduce two new center selection techniques for compact partition based indexes. These techniques were evaluated using the Geometric Near-neighbor Access Tree (GNAT). We experimentally showed that they achieve good performance.
publishDate 2007
dc.date.none.fl_str_mv 2007-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9535
url http://sedici.unlp.edu.ar/handle/10915/9535
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Mar07-16.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
98-104
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615758288519168
score 13.070432