Digitalización de imágenes de ECG para la detección del síndrome de Bayés
- Autores
- Franco, Lorena G.; Escobar Robledo, Luis A.; Bayés de Luna, Antoni; Massa, José María
- Año de publicación
- 2018
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Bayes Syndrome is a recently recognized by medical community sickness. This desease has been studied in the last decades by its discoverer, MD. Antonio Bayés de Luna. Since several works shows that this desease is related to multiple symptoms, an early detection is considered relevant. Given that digital support of the EKG signal is mandatory for its analysis by a computer algorithm and considering that even with the technological advances, a big number of health institutions rely on paper or image digitalized support por EKGs. Hence, an image digitalization method that preserves the signal features that are relevant to diagnose the Bayes Syndrome is needed. In this paper, some alternatives of digitalization are analyzed for a representative dataset. Results are promising and shows that developed digitalization algorithm could be used for the further project stages that involves signal processing and classification.
IX Workshop Procesamiento de Señales y Sistemas de Tiempo Real (WPSTR)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
síndrome de Bayés
Arritmias Cardíacas
ECG
bloqueo interauricular avanzado
procesamiento digital - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/73595
Ver los metadatos del registro completo
| id |
SEDICI_d2f041de482cbbbbec95671a07168c7b |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/73595 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Digitalización de imágenes de ECG para la detección del síndrome de BayésFranco, Lorena G.Escobar Robledo, Luis A.Bayés de Luna, AntoniMassa, José MaríaCiencias Informáticassíndrome de BayésArritmias CardíacasECGbloqueo interauricular avanzadoprocesamiento digitalBayes Syndrome is a recently recognized by medical community sickness. This desease has been studied in the last decades by its discoverer, MD. Antonio Bayés de Luna. Since several works shows that this desease is related to multiple symptoms, an early detection is considered relevant. Given that digital support of the EKG signal is mandatory for its analysis by a computer algorithm and considering that even with the technological advances, a big number of health institutions rely on paper or image digitalized support por EKGs. Hence, an image digitalization method that preserves the signal features that are relevant to diagnose the Bayes Syndrome is needed. In this paper, some alternatives of digitalization are analyzed for a representative dataset. Results are promising and shows that developed digitalization algorithm could be used for the further project stages that involves signal processing and classification.IX Workshop Procesamiento de Señales y Sistemas de Tiempo Real (WPSTR)Red de Universidades con Carreras en Informática (RedUNCI)2018-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf979-987http://sedici.unlp.edu.ar/handle/10915/73595spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-658-472-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:53:24Zoai:sedici.unlp.edu.ar:10915/73595Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:53:25.157SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Digitalización de imágenes de ECG para la detección del síndrome de Bayés |
| title |
Digitalización de imágenes de ECG para la detección del síndrome de Bayés |
| spellingShingle |
Digitalización de imágenes de ECG para la detección del síndrome de Bayés Franco, Lorena G. Ciencias Informáticas síndrome de Bayés Arritmias Cardíacas ECG bloqueo interauricular avanzado procesamiento digital |
| title_short |
Digitalización de imágenes de ECG para la detección del síndrome de Bayés |
| title_full |
Digitalización de imágenes de ECG para la detección del síndrome de Bayés |
| title_fullStr |
Digitalización de imágenes de ECG para la detección del síndrome de Bayés |
| title_full_unstemmed |
Digitalización de imágenes de ECG para la detección del síndrome de Bayés |
| title_sort |
Digitalización de imágenes de ECG para la detección del síndrome de Bayés |
| dc.creator.none.fl_str_mv |
Franco, Lorena G. Escobar Robledo, Luis A. Bayés de Luna, Antoni Massa, José María |
| author |
Franco, Lorena G. |
| author_facet |
Franco, Lorena G. Escobar Robledo, Luis A. Bayés de Luna, Antoni Massa, José María |
| author_role |
author |
| author2 |
Escobar Robledo, Luis A. Bayés de Luna, Antoni Massa, José María |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas síndrome de Bayés Arritmias Cardíacas ECG bloqueo interauricular avanzado procesamiento digital |
| topic |
Ciencias Informáticas síndrome de Bayés Arritmias Cardíacas ECG bloqueo interauricular avanzado procesamiento digital |
| dc.description.none.fl_txt_mv |
Bayes Syndrome is a recently recognized by medical community sickness. This desease has been studied in the last decades by its discoverer, MD. Antonio Bayés de Luna. Since several works shows that this desease is related to multiple symptoms, an early detection is considered relevant. Given that digital support of the EKG signal is mandatory for its analysis by a computer algorithm and considering that even with the technological advances, a big number of health institutions rely on paper or image digitalized support por EKGs. Hence, an image digitalization method that preserves the signal features that are relevant to diagnose the Bayes Syndrome is needed. In this paper, some alternatives of digitalization are analyzed for a representative dataset. Results are promising and shows that developed digitalization algorithm could be used for the further project stages that involves signal processing and classification. IX Workshop Procesamiento de Señales y Sistemas de Tiempo Real (WPSTR) Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
Bayes Syndrome is a recently recognized by medical community sickness. This desease has been studied in the last decades by its discoverer, MD. Antonio Bayés de Luna. Since several works shows that this desease is related to multiple symptoms, an early detection is considered relevant. Given that digital support of the EKG signal is mandatory for its analysis by a computer algorithm and considering that even with the technological advances, a big number of health institutions rely on paper or image digitalized support por EKGs. Hence, an image digitalization method that preserves the signal features that are relevant to diagnose the Bayes Syndrome is needed. In this paper, some alternatives of digitalization are analyzed for a representative dataset. Results are promising and shows that developed digitalization algorithm could be used for the further project stages that involves signal processing and classification. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/73595 |
| url |
http://sedici.unlp.edu.ar/handle/10915/73595 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-658-472-6 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 979-987 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783111845642240 |
| score |
12.982451 |