A neural network clustering algorithm for the ATLAS silicon pixel detector
- Autores
- Alconada Verzini, María Josefina; Alonso, Francisco; Anduaga, Xabier Sebastián; Dova, María Teresa; Monticelli, Fernando Gabriel; Wahlberg, Hernán Pablo
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.
La lista completa de autores que integran el documento puede consultarse en el archivo.
Instituto de Física La Plata - Materia
-
Física
Particle tracking detectors
Particle tracking detectors (solid-state detectors) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/85038
Ver los metadatos del registro completo
id |
SEDICI_d0aa5e104e7d556f4a576b1383a631ff |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/85038 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A neural network clustering algorithm for the ATLAS silicon pixel detectorAlconada Verzini, María JosefinaAlonso, FranciscoAnduaga, Xabier SebastiánDova, María TeresaMonticelli, Fernando GabrielWahlberg, Hernán PabloFísicaParticle tracking detectorsParticle tracking detectors (solid-state detectors)A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.La lista completa de autores que integran el documento puede consultarse en el archivo.Instituto de Física La Plata2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/85038enginfo:eu-repo/semantics/altIdentifier/issn/1748-0221info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/9/09/P09009info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:20Zoai:sedici.unlp.edu.ar:10915/85038Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:21.231SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A neural network clustering algorithm for the ATLAS silicon pixel detector |
title |
A neural network clustering algorithm for the ATLAS silicon pixel detector |
spellingShingle |
A neural network clustering algorithm for the ATLAS silicon pixel detector Alconada Verzini, María Josefina Física Particle tracking detectors Particle tracking detectors (solid-state detectors) |
title_short |
A neural network clustering algorithm for the ATLAS silicon pixel detector |
title_full |
A neural network clustering algorithm for the ATLAS silicon pixel detector |
title_fullStr |
A neural network clustering algorithm for the ATLAS silicon pixel detector |
title_full_unstemmed |
A neural network clustering algorithm for the ATLAS silicon pixel detector |
title_sort |
A neural network clustering algorithm for the ATLAS silicon pixel detector |
dc.creator.none.fl_str_mv |
Alconada Verzini, María Josefina Alonso, Francisco Anduaga, Xabier Sebastián Dova, María Teresa Monticelli, Fernando Gabriel Wahlberg, Hernán Pablo |
author |
Alconada Verzini, María Josefina |
author_facet |
Alconada Verzini, María Josefina Alonso, Francisco Anduaga, Xabier Sebastián Dova, María Teresa Monticelli, Fernando Gabriel Wahlberg, Hernán Pablo |
author_role |
author |
author2 |
Alonso, Francisco Anduaga, Xabier Sebastián Dova, María Teresa Monticelli, Fernando Gabriel Wahlberg, Hernán Pablo |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Física Particle tracking detectors Particle tracking detectors (solid-state detectors) |
topic |
Física Particle tracking detectors Particle tracking detectors (solid-state detectors) |
dc.description.none.fl_txt_mv |
A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution. La lista completa de autores que integran el documento puede consultarse en el archivo. Instituto de Física La Plata |
description |
A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/85038 |
url |
http://sedici.unlp.edu.ar/handle/10915/85038 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1748-0221 info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/9/09/P09009 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/3.0/ Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616036164304896 |
score |
13.070432 |