A neural network clustering algorithm for the ATLAS silicon pixel detector

Autores
Alconada Verzini, María Josefina; Alonso, Francisco; Anduaga, Xabier Sebastián; Dova, María Teresa; Monticelli, Fernando Gabriel; Wahlberg, Hernán Pablo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.
La lista completa de autores que integran el documento puede consultarse en el archivo.
Instituto de Física La Plata
Materia
Física
Particle tracking detectors
Particle tracking detectors (solid-state detectors)
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85038

id SEDICI_d0aa5e104e7d556f4a576b1383a631ff
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85038
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A neural network clustering algorithm for the ATLAS silicon pixel detectorAlconada Verzini, María JosefinaAlonso, FranciscoAnduaga, Xabier SebastiánDova, María TeresaMonticelli, Fernando GabrielWahlberg, Hernán PabloFísicaParticle tracking detectorsParticle tracking detectors (solid-state detectors)A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.La lista completa de autores que integran el documento puede consultarse en el archivo.Instituto de Física La Plata2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/85038enginfo:eu-repo/semantics/altIdentifier/issn/1748-0221info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/9/09/P09009info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:20Zoai:sedici.unlp.edu.ar:10915/85038Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:21.231SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A neural network clustering algorithm for the ATLAS silicon pixel detector
title A neural network clustering algorithm for the ATLAS silicon pixel detector
spellingShingle A neural network clustering algorithm for the ATLAS silicon pixel detector
Alconada Verzini, María Josefina
Física
Particle tracking detectors
Particle tracking detectors (solid-state detectors)
title_short A neural network clustering algorithm for the ATLAS silicon pixel detector
title_full A neural network clustering algorithm for the ATLAS silicon pixel detector
title_fullStr A neural network clustering algorithm for the ATLAS silicon pixel detector
title_full_unstemmed A neural network clustering algorithm for the ATLAS silicon pixel detector
title_sort A neural network clustering algorithm for the ATLAS silicon pixel detector
dc.creator.none.fl_str_mv Alconada Verzini, María Josefina
Alonso, Francisco
Anduaga, Xabier Sebastián
Dova, María Teresa
Monticelli, Fernando Gabriel
Wahlberg, Hernán Pablo
author Alconada Verzini, María Josefina
author_facet Alconada Verzini, María Josefina
Alonso, Francisco
Anduaga, Xabier Sebastián
Dova, María Teresa
Monticelli, Fernando Gabriel
Wahlberg, Hernán Pablo
author_role author
author2 Alonso, Francisco
Anduaga, Xabier Sebastián
Dova, María Teresa
Monticelli, Fernando Gabriel
Wahlberg, Hernán Pablo
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Física
Particle tracking detectors
Particle tracking detectors (solid-state detectors)
topic Física
Particle tracking detectors
Particle tracking detectors (solid-state detectors)
dc.description.none.fl_txt_mv A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.
La lista completa de autores que integran el documento puede consultarse en el archivo.
Instituto de Física La Plata
description A novel technique to identify and split clusters created by multiple charged particles in the ATLAS pixel detector using a set of artificial neural networks is presented. Such merged clusters are a common feature of tracks originating from highly energetic objects, such as jets. Neural networks are trained using Monte Carlo samples produced with a detailed detector simulation. This technique replaces the former clustering approach based on a connected component analysis and charge interpolation. The performance of the neural network splitting technique is quantified using data from proton-proton collisions at the LHC collected by the ATLAS detector in 2011 and from Monte Carlo simulations. This technique reduces the number of clusters shared between tracks in highly energetic jets by up to a factor of three. It also provides more precise position and error estimates of the clusters in both the transverse and longitudinal impact parameter resolution.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85038
url http://sedici.unlp.edu.ar/handle/10915/85038
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1748-0221
info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-0221/9/09/P09009
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616036164304896
score 13.070432