Selección de características en entornos Big Data : Aplicación en Gene Signatures

Autores
Camele, Genaro
Año de publicación
2022
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
En el área de la minería de datos y su aplicación con técnicas de machine learning, los algoritmos de selección de características juegan un papel muy importante. El objetivo de esos algoritmos es el de reducir las entradas a un tamaño apropiado para su procesamiento y análisis. Cuando el volumen de información a procesar crece hace que la ejecución de los algoritmos de extracción de características convencionales tenga un tiempo de procesamiento sumamente alto. Si bien puede considerarse la separación o el análisis independiente de cada característica, muchas veces resulta útil poder analizar correlaciones entre dos o más variables. La selección de características puede aplicarse a la medicina genómica, la cual ayuda a entender de forma más precisa por qué enfermamos, y el peso que tiene en una enfermedad la existencia de defectos genómicos frente a factores medioambientales que pueden desencadenar una enfermedad concreta. En el ámbito de la genómica funcional, se destaca el análisis de perfiles de expresión génica; éstos tienen como objetivo principal la identificación de un grupo de genes, cuyo patrón de expresión se encuentren asociados a un fenotipo en particular, concepto conocido como gene signature [1]. Un objetivo particular de los signatures es su utilidad como biomarcador diagnóstico, pronóstico o predictivo de una patología en estudio. Los biomarcadores con valor pronóstico permiten una mejor estratificación de pacientes. Para llevar a cabo el descubrimiento de nuevos gene signatures es necesario un proceso de automatización que permita encontrar genes candidatos en base al conocimiento del experto. En la actualidad esta tarea es realizada de forma manual. Con la rápida acumulación de datos de expresión génica de diversas tecnologías los algoritmos automáticos de reducción de dimensiones pueden seleccionar aquellas que resulten más representativas del conjunto de características. Los resultados de esta selección podría ser interpretada como un posible gene signature. El objetivo general de este plan de beca es el de contribuir con el desarrollo de algoritmos de extracción de características en entornos Big Data que permitan la identificación y la evaluación de gene signatures.
Carrera: Doctorado en Ciencias Informáticas Tipo de beca: Beca Doctoral Año de inicio de beca: 2019 Año de finalización de beca: 2024 Organismo: UNLP Apellido, Nombre del Director/a/e: Hasperué, Waldo Lugar de desarrollo: Instituto de Investigación en Informática (III-LIDI) Tipo de investigación: Básica
Facultad de Informática
Materia
Cs de la Computación
Gene Signatures
Biomarcadores
Big Data
Metaheurísticas
Gene Signatures
Biomarkers
Biomarkers
Big Data
Metaheuristics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/145670

id SEDICI_cf7c2bff1599f61819f643ac015a32db
oai_identifier_str oai:sedici.unlp.edu.ar:10915/145670
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Selección de características en entornos Big Data : Aplicación en Gene SignaturesFeature selection in Big Data environments. Application in Gene SignaturesCamele, GenaroCs de la ComputaciónGene SignaturesBiomarcadoresBig DataMetaheurísticasGene SignaturesBiomarkersBiomarkersBig DataMetaheuristicsEn el área de la minería de datos y su aplicación con técnicas de machine learning, los algoritmos de selección de características juegan un papel muy importante. El objetivo de esos algoritmos es el de reducir las entradas a un tamaño apropiado para su procesamiento y análisis. Cuando el volumen de información a procesar crece hace que la ejecución de los algoritmos de extracción de características convencionales tenga un tiempo de procesamiento sumamente alto. Si bien puede considerarse la separación o el análisis independiente de cada característica, muchas veces resulta útil poder analizar correlaciones entre dos o más variables. La selección de características puede aplicarse a la medicina genómica, la cual ayuda a entender de forma más precisa por qué enfermamos, y el peso que tiene en una enfermedad la existencia de defectos genómicos frente a factores medioambientales que pueden desencadenar una enfermedad concreta. En el ámbito de la genómica funcional, se destaca el análisis de perfiles de expresión génica; éstos tienen como objetivo principal la identificación de un grupo de genes, cuyo patrón de expresión se encuentren asociados a un fenotipo en particular, concepto conocido como gene signature [1]. Un objetivo particular de los signatures es su utilidad como biomarcador diagnóstico, pronóstico o predictivo de una patología en estudio. Los biomarcadores con valor pronóstico permiten una mejor estratificación de pacientes. Para llevar a cabo el descubrimiento de nuevos gene signatures es necesario un proceso de automatización que permita encontrar genes candidatos en base al conocimiento del experto. En la actualidad esta tarea es realizada de forma manual. Con la rápida acumulación de datos de expresión génica de diversas tecnologías los algoritmos automáticos de reducción de dimensiones pueden seleccionar aquellas que resulten más representativas del conjunto de características. Los resultados de esta selección podría ser interpretada como un posible gene signature. El objetivo general de este plan de beca es el de contribuir con el desarrollo de algoritmos de extracción de características en entornos Big Data que permitan la identificación y la evaluación de gene signatures.Carrera: Doctorado en Ciencias Informáticas Tipo de beca: Beca Doctoral Año de inicio de beca: 2019 Año de finalización de beca: 2024 Organismo: UNLP Apellido, Nombre del Director/a/e: Hasperué, Waldo Lugar de desarrollo: Instituto de Investigación en Informática (III-LIDI) Tipo de investigación: BásicaFacultad de Informática2022-11-23info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/145670spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:09:14Zoai:sedici.unlp.edu.ar:10915/145670Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:09:14.292SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Selección de características en entornos Big Data : Aplicación en Gene Signatures
Feature selection in Big Data environments. Application in Gene Signatures
title Selección de características en entornos Big Data : Aplicación en Gene Signatures
spellingShingle Selección de características en entornos Big Data : Aplicación en Gene Signatures
Camele, Genaro
Cs de la Computación
Gene Signatures
Biomarcadores
Big Data
Metaheurísticas
Gene Signatures
Biomarkers
Biomarkers
Big Data
Metaheuristics
title_short Selección de características en entornos Big Data : Aplicación en Gene Signatures
title_full Selección de características en entornos Big Data : Aplicación en Gene Signatures
title_fullStr Selección de características en entornos Big Data : Aplicación en Gene Signatures
title_full_unstemmed Selección de características en entornos Big Data : Aplicación en Gene Signatures
title_sort Selección de características en entornos Big Data : Aplicación en Gene Signatures
dc.creator.none.fl_str_mv Camele, Genaro
author Camele, Genaro
author_facet Camele, Genaro
author_role author
dc.subject.none.fl_str_mv Cs de la Computación
Gene Signatures
Biomarcadores
Big Data
Metaheurísticas
Gene Signatures
Biomarkers
Biomarkers
Big Data
Metaheuristics
topic Cs de la Computación
Gene Signatures
Biomarcadores
Big Data
Metaheurísticas
Gene Signatures
Biomarkers
Biomarkers
Big Data
Metaheuristics
dc.description.none.fl_txt_mv En el área de la minería de datos y su aplicación con técnicas de machine learning, los algoritmos de selección de características juegan un papel muy importante. El objetivo de esos algoritmos es el de reducir las entradas a un tamaño apropiado para su procesamiento y análisis. Cuando el volumen de información a procesar crece hace que la ejecución de los algoritmos de extracción de características convencionales tenga un tiempo de procesamiento sumamente alto. Si bien puede considerarse la separación o el análisis independiente de cada característica, muchas veces resulta útil poder analizar correlaciones entre dos o más variables. La selección de características puede aplicarse a la medicina genómica, la cual ayuda a entender de forma más precisa por qué enfermamos, y el peso que tiene en una enfermedad la existencia de defectos genómicos frente a factores medioambientales que pueden desencadenar una enfermedad concreta. En el ámbito de la genómica funcional, se destaca el análisis de perfiles de expresión génica; éstos tienen como objetivo principal la identificación de un grupo de genes, cuyo patrón de expresión se encuentren asociados a un fenotipo en particular, concepto conocido como gene signature [1]. Un objetivo particular de los signatures es su utilidad como biomarcador diagnóstico, pronóstico o predictivo de una patología en estudio. Los biomarcadores con valor pronóstico permiten una mejor estratificación de pacientes. Para llevar a cabo el descubrimiento de nuevos gene signatures es necesario un proceso de automatización que permita encontrar genes candidatos en base al conocimiento del experto. En la actualidad esta tarea es realizada de forma manual. Con la rápida acumulación de datos de expresión génica de diversas tecnologías los algoritmos automáticos de reducción de dimensiones pueden seleccionar aquellas que resulten más representativas del conjunto de características. Los resultados de esta selección podría ser interpretada como un posible gene signature. El objetivo general de este plan de beca es el de contribuir con el desarrollo de algoritmos de extracción de características en entornos Big Data que permitan la identificación y la evaluación de gene signatures.
Carrera: Doctorado en Ciencias Informáticas Tipo de beca: Beca Doctoral Año de inicio de beca: 2019 Año de finalización de beca: 2024 Organismo: UNLP Apellido, Nombre del Director/a/e: Hasperué, Waldo Lugar de desarrollo: Instituto de Investigación en Informática (III-LIDI) Tipo de investigación: Básica
Facultad de Informática
description En el área de la minería de datos y su aplicación con técnicas de machine learning, los algoritmos de selección de características juegan un papel muy importante. El objetivo de esos algoritmos es el de reducir las entradas a un tamaño apropiado para su procesamiento y análisis. Cuando el volumen de información a procesar crece hace que la ejecución de los algoritmos de extracción de características convencionales tenga un tiempo de procesamiento sumamente alto. Si bien puede considerarse la separación o el análisis independiente de cada característica, muchas veces resulta útil poder analizar correlaciones entre dos o más variables. La selección de características puede aplicarse a la medicina genómica, la cual ayuda a entender de forma más precisa por qué enfermamos, y el peso que tiene en una enfermedad la existencia de defectos genómicos frente a factores medioambientales que pueden desencadenar una enfermedad concreta. En el ámbito de la genómica funcional, se destaca el análisis de perfiles de expresión génica; éstos tienen como objetivo principal la identificación de un grupo de genes, cuyo patrón de expresión se encuentren asociados a un fenotipo en particular, concepto conocido como gene signature [1]. Un objetivo particular de los signatures es su utilidad como biomarcador diagnóstico, pronóstico o predictivo de una patología en estudio. Los biomarcadores con valor pronóstico permiten una mejor estratificación de pacientes. Para llevar a cabo el descubrimiento de nuevos gene signatures es necesario un proceso de automatización que permita encontrar genes candidatos en base al conocimiento del experto. En la actualidad esta tarea es realizada de forma manual. Con la rápida acumulación de datos de expresión génica de diversas tecnologías los algoritmos automáticos de reducción de dimensiones pueden seleccionar aquellas que resulten más representativas del conjunto de características. Los resultados de esta selección podría ser interpretada como un posible gene signature. El objetivo general de este plan de beca es el de contribuir con el desarrollo de algoritmos de extracción de características en entornos Big Data que permitan la identificación y la evaluación de gene signatures.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-23
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/145670
url http://sedici.unlp.edu.ar/handle/10915/145670
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260595100876800
score 13.13397