Selección de características en entornos Big Data : Aplicación en Gene Signatures
- Autores
- Camele, Genaro
- Año de publicación
- 2022
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- En el área de la minería de datos y su aplicación con técnicas de machine learning, los algoritmos de selección de características juegan un papel muy importante. El objetivo de esos algoritmos es el de reducir las entradas a un tamaño apropiado para su procesamiento y análisis. Cuando el volumen de información a procesar crece hace que la ejecución de los algoritmos de extracción de características convencionales tenga un tiempo de procesamiento sumamente alto. Si bien puede considerarse la separación o el análisis independiente de cada característica, muchas veces resulta útil poder analizar correlaciones entre dos o más variables. La selección de características puede aplicarse a la medicina genómica, la cual ayuda a entender de forma más precisa por qué enfermamos, y el peso que tiene en una enfermedad la existencia de defectos genómicos frente a factores medioambientales que pueden desencadenar una enfermedad concreta. En el ámbito de la genómica funcional, se destaca el análisis de perfiles de expresión génica; éstos tienen como objetivo principal la identificación de un grupo de genes, cuyo patrón de expresión se encuentren asociados a un fenotipo en particular, concepto conocido como gene signature [1]. Un objetivo particular de los signatures es su utilidad como biomarcador diagnóstico, pronóstico o predictivo de una patología en estudio. Los biomarcadores con valor pronóstico permiten una mejor estratificación de pacientes. Para llevar a cabo el descubrimiento de nuevos gene signatures es necesario un proceso de automatización que permita encontrar genes candidatos en base al conocimiento del experto. En la actualidad esta tarea es realizada de forma manual. Con la rápida acumulación de datos de expresión génica de diversas tecnologías los algoritmos automáticos de reducción de dimensiones pueden seleccionar aquellas que resulten más representativas del conjunto de características. Los resultados de esta selección podría ser interpretada como un posible gene signature. El objetivo general de este plan de beca es el de contribuir con el desarrollo de algoritmos de extracción de características en entornos Big Data que permitan la identificación y la evaluación de gene signatures.
Carrera: Doctorado en Ciencias Informáticas Tipo de beca: Beca Doctoral Año de inicio de beca: 2019 Año de finalización de beca: 2024 Organismo: UNLP Apellido, Nombre del Director/a/e: Hasperué, Waldo Lugar de desarrollo: Instituto de Investigación en Informática (III-LIDI) Tipo de investigación: Básica
Facultad de Informática - Materia
-
Cs de la Computación
Gene Signatures
Biomarcadores
Big Data
Metaheurísticas
Gene Signatures
Biomarkers
Biomarkers
Big Data
Metaheuristics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/145670
Ver los metadatos del registro completo
id |
SEDICI_cf7c2bff1599f61819f643ac015a32db |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/145670 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Selección de características en entornos Big Data : Aplicación en Gene SignaturesFeature selection in Big Data environments. Application in Gene SignaturesCamele, GenaroCs de la ComputaciónGene SignaturesBiomarcadoresBig DataMetaheurísticasGene SignaturesBiomarkersBiomarkersBig DataMetaheuristicsEn el área de la minería de datos y su aplicación con técnicas de machine learning, los algoritmos de selección de características juegan un papel muy importante. El objetivo de esos algoritmos es el de reducir las entradas a un tamaño apropiado para su procesamiento y análisis. Cuando el volumen de información a procesar crece hace que la ejecución de los algoritmos de extracción de características convencionales tenga un tiempo de procesamiento sumamente alto. Si bien puede considerarse la separación o el análisis independiente de cada característica, muchas veces resulta útil poder analizar correlaciones entre dos o más variables. La selección de características puede aplicarse a la medicina genómica, la cual ayuda a entender de forma más precisa por qué enfermamos, y el peso que tiene en una enfermedad la existencia de defectos genómicos frente a factores medioambientales que pueden desencadenar una enfermedad concreta. En el ámbito de la genómica funcional, se destaca el análisis de perfiles de expresión génica; éstos tienen como objetivo principal la identificación de un grupo de genes, cuyo patrón de expresión se encuentren asociados a un fenotipo en particular, concepto conocido como gene signature [1]. Un objetivo particular de los signatures es su utilidad como biomarcador diagnóstico, pronóstico o predictivo de una patología en estudio. Los biomarcadores con valor pronóstico permiten una mejor estratificación de pacientes. Para llevar a cabo el descubrimiento de nuevos gene signatures es necesario un proceso de automatización que permita encontrar genes candidatos en base al conocimiento del experto. En la actualidad esta tarea es realizada de forma manual. Con la rápida acumulación de datos de expresión génica de diversas tecnologías los algoritmos automáticos de reducción de dimensiones pueden seleccionar aquellas que resulten más representativas del conjunto de características. Los resultados de esta selección podría ser interpretada como un posible gene signature. El objetivo general de este plan de beca es el de contribuir con el desarrollo de algoritmos de extracción de características en entornos Big Data que permitan la identificación y la evaluación de gene signatures.Carrera: Doctorado en Ciencias Informáticas Tipo de beca: Beca Doctoral Año de inicio de beca: 2019 Año de finalización de beca: 2024 Organismo: UNLP Apellido, Nombre del Director/a/e: Hasperué, Waldo Lugar de desarrollo: Instituto de Investigación en Informática (III-LIDI) Tipo de investigación: BásicaFacultad de Informática2022-11-23info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/145670spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:09:14Zoai:sedici.unlp.edu.ar:10915/145670Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:09:14.292SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Selección de características en entornos Big Data : Aplicación en Gene Signatures Feature selection in Big Data environments. Application in Gene Signatures |
title |
Selección de características en entornos Big Data : Aplicación en Gene Signatures |
spellingShingle |
Selección de características en entornos Big Data : Aplicación en Gene Signatures Camele, Genaro Cs de la Computación Gene Signatures Biomarcadores Big Data Metaheurísticas Gene Signatures Biomarkers Biomarkers Big Data Metaheuristics |
title_short |
Selección de características en entornos Big Data : Aplicación en Gene Signatures |
title_full |
Selección de características en entornos Big Data : Aplicación en Gene Signatures |
title_fullStr |
Selección de características en entornos Big Data : Aplicación en Gene Signatures |
title_full_unstemmed |
Selección de características en entornos Big Data : Aplicación en Gene Signatures |
title_sort |
Selección de características en entornos Big Data : Aplicación en Gene Signatures |
dc.creator.none.fl_str_mv |
Camele, Genaro |
author |
Camele, Genaro |
author_facet |
Camele, Genaro |
author_role |
author |
dc.subject.none.fl_str_mv |
Cs de la Computación Gene Signatures Biomarcadores Big Data Metaheurísticas Gene Signatures Biomarkers Biomarkers Big Data Metaheuristics |
topic |
Cs de la Computación Gene Signatures Biomarcadores Big Data Metaheurísticas Gene Signatures Biomarkers Biomarkers Big Data Metaheuristics |
dc.description.none.fl_txt_mv |
En el área de la minería de datos y su aplicación con técnicas de machine learning, los algoritmos de selección de características juegan un papel muy importante. El objetivo de esos algoritmos es el de reducir las entradas a un tamaño apropiado para su procesamiento y análisis. Cuando el volumen de información a procesar crece hace que la ejecución de los algoritmos de extracción de características convencionales tenga un tiempo de procesamiento sumamente alto. Si bien puede considerarse la separación o el análisis independiente de cada característica, muchas veces resulta útil poder analizar correlaciones entre dos o más variables. La selección de características puede aplicarse a la medicina genómica, la cual ayuda a entender de forma más precisa por qué enfermamos, y el peso que tiene en una enfermedad la existencia de defectos genómicos frente a factores medioambientales que pueden desencadenar una enfermedad concreta. En el ámbito de la genómica funcional, se destaca el análisis de perfiles de expresión génica; éstos tienen como objetivo principal la identificación de un grupo de genes, cuyo patrón de expresión se encuentren asociados a un fenotipo en particular, concepto conocido como gene signature [1]. Un objetivo particular de los signatures es su utilidad como biomarcador diagnóstico, pronóstico o predictivo de una patología en estudio. Los biomarcadores con valor pronóstico permiten una mejor estratificación de pacientes. Para llevar a cabo el descubrimiento de nuevos gene signatures es necesario un proceso de automatización que permita encontrar genes candidatos en base al conocimiento del experto. En la actualidad esta tarea es realizada de forma manual. Con la rápida acumulación de datos de expresión génica de diversas tecnologías los algoritmos automáticos de reducción de dimensiones pueden seleccionar aquellas que resulten más representativas del conjunto de características. Los resultados de esta selección podría ser interpretada como un posible gene signature. El objetivo general de este plan de beca es el de contribuir con el desarrollo de algoritmos de extracción de características en entornos Big Data que permitan la identificación y la evaluación de gene signatures. Carrera: Doctorado en Ciencias Informáticas Tipo de beca: Beca Doctoral Año de inicio de beca: 2019 Año de finalización de beca: 2024 Organismo: UNLP Apellido, Nombre del Director/a/e: Hasperué, Waldo Lugar de desarrollo: Instituto de Investigación en Informática (III-LIDI) Tipo de investigación: Básica Facultad de Informática |
description |
En el área de la minería de datos y su aplicación con técnicas de machine learning, los algoritmos de selección de características juegan un papel muy importante. El objetivo de esos algoritmos es el de reducir las entradas a un tamaño apropiado para su procesamiento y análisis. Cuando el volumen de información a procesar crece hace que la ejecución de los algoritmos de extracción de características convencionales tenga un tiempo de procesamiento sumamente alto. Si bien puede considerarse la separación o el análisis independiente de cada característica, muchas veces resulta útil poder analizar correlaciones entre dos o más variables. La selección de características puede aplicarse a la medicina genómica, la cual ayuda a entender de forma más precisa por qué enfermamos, y el peso que tiene en una enfermedad la existencia de defectos genómicos frente a factores medioambientales que pueden desencadenar una enfermedad concreta. En el ámbito de la genómica funcional, se destaca el análisis de perfiles de expresión génica; éstos tienen como objetivo principal la identificación de un grupo de genes, cuyo patrón de expresión se encuentren asociados a un fenotipo en particular, concepto conocido como gene signature [1]. Un objetivo particular de los signatures es su utilidad como biomarcador diagnóstico, pronóstico o predictivo de una patología en estudio. Los biomarcadores con valor pronóstico permiten una mejor estratificación de pacientes. Para llevar a cabo el descubrimiento de nuevos gene signatures es necesario un proceso de automatización que permita encontrar genes candidatos en base al conocimiento del experto. En la actualidad esta tarea es realizada de forma manual. Con la rápida acumulación de datos de expresión génica de diversas tecnologías los algoritmos automáticos de reducción de dimensiones pueden seleccionar aquellas que resulten más representativas del conjunto de características. Los resultados de esta selección podría ser interpretada como un posible gene signature. El objetivo general de este plan de beca es el de contribuir con el desarrollo de algoritmos de extracción de características en entornos Big Data que permitan la identificación y la evaluación de gene signatures. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-23 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/145670 |
url |
http://sedici.unlp.edu.ar/handle/10915/145670 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260595100876800 |
score |
13.13397 |