Clasificación automática de emisiones radar mediante combinación de ARTMAP y filtros Kalman
- Autores
- Trobiani, Armando; Rancan, Claudio; Britos, Paola Verónica
- Año de publicación
- 2008
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Las Medidas de Apoyo Electrónico (Electronic Support Measures ESM) tienen que ver con la búsqueda, intercepción, localización, análisis e identificación de energía electromagnética irradiada con propósitos militares. Una función crítica de un sistema ESM es la identificación en tiempo real del tipo de radar asociado con cada tren de pulsos interceptado. Esta tarea constituye un desafío debido a la creciente densidad electromagnética, típica de una zona de conflicto, donde puede haber cientos de miles de pulsos por segundo, además de gran dispersión en los modos de trabajo de los radares militares. En este trabajo se examina un sistema de reconocimiento de emisiones de radar que combina diversas fuentes de información para predecir el tipo de radar más probable. Los parámetros del pulso que caracterizan el tipo de radar se utilizan para la tarea de clasificación, mientras que los parámetros de carácter espacial (dirección de arribo y amplitud) se utilizan para separar los trenes de pulsos correspondientes a los distintos emisores activos. El componente principal del sistema de reconocimiento es un clasificador basado en una red neuronal con capacidad de aprendizaje incremental, que se entrena para determinar el tipo de emisor radar presente en el ambiente. El sistema aprende en forma autónoma a identificar cada tipo específico de radar, directamente a partir de la información recolectada de campo
Presentado en el Congreso General
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Transmitters
red ARTMAP difusa
ESM
Clustering
Medidas de Apoyo Electrónico - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/21407
Ver los metadatos del registro completo
id |
SEDICI_ceef860e03d36e443ef2d2f7ad744b75 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/21407 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Clasificación automática de emisiones radar mediante combinación de ARTMAP y filtros KalmanTrobiani, ArmandoRancan, ClaudioBritos, Paola VerónicaCiencias InformáticasTransmittersred ARTMAP difusaESMClusteringMedidas de Apoyo ElectrónicoLas Medidas de Apoyo Electrónico (Electronic Support Measures ESM) tienen que ver con la búsqueda, intercepción, localización, análisis e identificación de energía electromagnética irradiada con propósitos militares. Una función crítica de un sistema ESM es la identificación en tiempo real del tipo de radar asociado con cada tren de pulsos interceptado. Esta tarea constituye un desafío debido a la creciente densidad electromagnética, típica de una zona de conflicto, donde puede haber cientos de miles de pulsos por segundo, además de gran dispersión en los modos de trabajo de los radares militares. En este trabajo se examina un sistema de reconocimiento de emisiones de radar que combina diversas fuentes de información para predecir el tipo de radar más probable. Los parámetros del pulso que caracterizan el tipo de radar se utilizan para la tarea de clasificación, mientras que los parámetros de carácter espacial (dirección de arribo y amplitud) se utilizan para separar los trenes de pulsos correspondientes a los distintos emisores activos. El componente principal del sistema de reconocimiento es un clasificador basado en una red neuronal con capacidad de aprendizaje incremental, que se entrena para determinar el tipo de emisor radar presente en el ambiente. El sistema aprende en forma autónoma a identificar cada tipo específico de radar, directamente a partir de la información recolectada de campoPresentado en el Congreso GeneralRed de Universidades con Carreras en Informática (RedUNCI)2008-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21407spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:37Zoai:sedici.unlp.edu.ar:10915/21407Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:37.616SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Clasificación automática de emisiones radar mediante combinación de ARTMAP y filtros Kalman |
title |
Clasificación automática de emisiones radar mediante combinación de ARTMAP y filtros Kalman |
spellingShingle |
Clasificación automática de emisiones radar mediante combinación de ARTMAP y filtros Kalman Trobiani, Armando Ciencias Informáticas Transmitters red ARTMAP difusa ESM Clustering Medidas de Apoyo Electrónico |
title_short |
Clasificación automática de emisiones radar mediante combinación de ARTMAP y filtros Kalman |
title_full |
Clasificación automática de emisiones radar mediante combinación de ARTMAP y filtros Kalman |
title_fullStr |
Clasificación automática de emisiones radar mediante combinación de ARTMAP y filtros Kalman |
title_full_unstemmed |
Clasificación automática de emisiones radar mediante combinación de ARTMAP y filtros Kalman |
title_sort |
Clasificación automática de emisiones radar mediante combinación de ARTMAP y filtros Kalman |
dc.creator.none.fl_str_mv |
Trobiani, Armando Rancan, Claudio Britos, Paola Verónica |
author |
Trobiani, Armando |
author_facet |
Trobiani, Armando Rancan, Claudio Britos, Paola Verónica |
author_role |
author |
author2 |
Rancan, Claudio Britos, Paola Verónica |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Transmitters red ARTMAP difusa ESM Clustering Medidas de Apoyo Electrónico |
topic |
Ciencias Informáticas Transmitters red ARTMAP difusa ESM Clustering Medidas de Apoyo Electrónico |
dc.description.none.fl_txt_mv |
Las Medidas de Apoyo Electrónico (Electronic Support Measures ESM) tienen que ver con la búsqueda, intercepción, localización, análisis e identificación de energía electromagnética irradiada con propósitos militares. Una función crítica de un sistema ESM es la identificación en tiempo real del tipo de radar asociado con cada tren de pulsos interceptado. Esta tarea constituye un desafío debido a la creciente densidad electromagnética, típica de una zona de conflicto, donde puede haber cientos de miles de pulsos por segundo, además de gran dispersión en los modos de trabajo de los radares militares. En este trabajo se examina un sistema de reconocimiento de emisiones de radar que combina diversas fuentes de información para predecir el tipo de radar más probable. Los parámetros del pulso que caracterizan el tipo de radar se utilizan para la tarea de clasificación, mientras que los parámetros de carácter espacial (dirección de arribo y amplitud) se utilizan para separar los trenes de pulsos correspondientes a los distintos emisores activos. El componente principal del sistema de reconocimiento es un clasificador basado en una red neuronal con capacidad de aprendizaje incremental, que se entrena para determinar el tipo de emisor radar presente en el ambiente. El sistema aprende en forma autónoma a identificar cada tipo específico de radar, directamente a partir de la información recolectada de campo Presentado en el Congreso General Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Las Medidas de Apoyo Electrónico (Electronic Support Measures ESM) tienen que ver con la búsqueda, intercepción, localización, análisis e identificación de energía electromagnética irradiada con propósitos militares. Una función crítica de un sistema ESM es la identificación en tiempo real del tipo de radar asociado con cada tren de pulsos interceptado. Esta tarea constituye un desafío debido a la creciente densidad electromagnética, típica de una zona de conflicto, donde puede haber cientos de miles de pulsos por segundo, además de gran dispersión en los modos de trabajo de los radares militares. En este trabajo se examina un sistema de reconocimiento de emisiones de radar que combina diversas fuentes de información para predecir el tipo de radar más probable. Los parámetros del pulso que caracterizan el tipo de radar se utilizan para la tarea de clasificación, mientras que los parámetros de carácter espacial (dirección de arribo y amplitud) se utilizan para separar los trenes de pulsos correspondientes a los distintos emisores activos. El componente principal del sistema de reconocimiento es un clasificador basado en una red neuronal con capacidad de aprendizaje incremental, que se entrena para determinar el tipo de emisor radar presente en el ambiente. El sistema aprende en forma autónoma a identificar cada tipo específico de radar, directamente a partir de la información recolectada de campo |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/21407 |
url |
http://sedici.unlp.edu.ar/handle/10915/21407 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615804124921856 |
score |
13.070432 |