The Potential Distributive Impact of AI-driven Labor Changes in Latin America

Autores
Ciaschi, Matías Omar; Falcone, Guillermo; Garganta, Santiago; Gasparini, Leonardo Carlos; Bertín, Octavio; Ramírez Leira, Lucía
Año de publicación
2025
Idioma
inglés
Tipo de recurso
documento de trabajo
Estado
versión enviada
Descripción
This paper investigates the potential distributional consequences of artificial intelligence (AI) adoption in Latin American labor markets. Using harmonized household survey data from 14 countries, we combine four recently developed AI occupational exposure indices—the AI Occupational Exposure Index (AIOE), the ComplementarityAdjusted AIOE (C-AIOE), the Generative AI Exposure Index (GBB), and the AIGenerated Occupational Exposure Index (GENOE)—to analyze patterns across countries and worker groups. We validate these measures by comparing task profiles between Latin America and high-income economies using PIAAC data, and develop a contextual adjustment that incorporates informality, wage structures, and union coverage. Finally, we simulate first-order impacts of AI-induced displacement on earnings, poverty, and inequality. The results show substantial heterogeneity, with higher levels of AI-related risk among women, younger, more educated, and formal workers. Indices that account for task complementarities show flatter gradients across the income and education distribution. Simulations suggest that displacement effects may lead to only moderate increases in inequality and poverty in the absence of mitigating policies.
Centro de Estudios Distributivos, Laborales y Sociales
Materia
Ciencias Económicas
Artificial Intelligence
Labor Market
Income Distribution
Latin America
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/188465

id SEDICI_ce1cfab534ab1fa6961c918fc685feac
oai_identifier_str oai:sedici.unlp.edu.ar:10915/188465
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The Potential Distributive Impact of AI-driven Labor Changes in Latin AmericaCiaschi, Matías OmarFalcone, GuillermoGarganta, SantiagoGasparini, Leonardo CarlosBertín, OctavioRamírez Leira, LucíaCiencias EconómicasArtificial IntelligenceLabor MarketIncome DistributionLatin AmericaThis paper investigates the potential distributional consequences of artificial intelligence (AI) adoption in Latin American labor markets. Using harmonized household survey data from 14 countries, we combine four recently developed AI occupational exposure indices—the AI Occupational Exposure Index (AIOE), the ComplementarityAdjusted AIOE (C-AIOE), the Generative AI Exposure Index (GBB), and the AIGenerated Occupational Exposure Index (GENOE)—to analyze patterns across countries and worker groups. We validate these measures by comparing task profiles between Latin America and high-income economies using PIAAC data, and develop a contextual adjustment that incorporates informality, wage structures, and union coverage. Finally, we simulate first-order impacts of AI-induced displacement on earnings, poverty, and inequality. The results show substantial heterogeneity, with higher levels of AI-related risk among women, younger, more educated, and formal workers. Indices that account for task complementarities show flatter gradients across the income and education distribution. Simulations suggest that displacement effects may lead to only moderate increases in inequality and poverty in the absence of mitigating policies.Centro de Estudios Distributivos, Laborales y Sociales2025-12info:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/submittedVersionDocumento de trabajohttp://purl.org/coar/resource_type/c_8042info:ar-repo/semantics/documentoDeTrabajoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/188465enginfo:eu-repo/semantics/altIdentifier/url/https://www.cedlas.econo.unlp.edu.ar/wp/no-361/info:eu-repo/semantics/altIdentifier/issn/1853-0168info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T11:53:59Zoai:sedici.unlp.edu.ar:10915/188465Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 11:54:00.125SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The Potential Distributive Impact of AI-driven Labor Changes in Latin America
title The Potential Distributive Impact of AI-driven Labor Changes in Latin America
spellingShingle The Potential Distributive Impact of AI-driven Labor Changes in Latin America
Ciaschi, Matías Omar
Ciencias Económicas
Artificial Intelligence
Labor Market
Income Distribution
Latin America
title_short The Potential Distributive Impact of AI-driven Labor Changes in Latin America
title_full The Potential Distributive Impact of AI-driven Labor Changes in Latin America
title_fullStr The Potential Distributive Impact of AI-driven Labor Changes in Latin America
title_full_unstemmed The Potential Distributive Impact of AI-driven Labor Changes in Latin America
title_sort The Potential Distributive Impact of AI-driven Labor Changes in Latin America
dc.creator.none.fl_str_mv Ciaschi, Matías Omar
Falcone, Guillermo
Garganta, Santiago
Gasparini, Leonardo Carlos
Bertín, Octavio
Ramírez Leira, Lucía
author Ciaschi, Matías Omar
author_facet Ciaschi, Matías Omar
Falcone, Guillermo
Garganta, Santiago
Gasparini, Leonardo Carlos
Bertín, Octavio
Ramírez Leira, Lucía
author_role author
author2 Falcone, Guillermo
Garganta, Santiago
Gasparini, Leonardo Carlos
Bertín, Octavio
Ramírez Leira, Lucía
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Económicas
Artificial Intelligence
Labor Market
Income Distribution
Latin America
topic Ciencias Económicas
Artificial Intelligence
Labor Market
Income Distribution
Latin America
dc.description.none.fl_txt_mv This paper investigates the potential distributional consequences of artificial intelligence (AI) adoption in Latin American labor markets. Using harmonized household survey data from 14 countries, we combine four recently developed AI occupational exposure indices—the AI Occupational Exposure Index (AIOE), the ComplementarityAdjusted AIOE (C-AIOE), the Generative AI Exposure Index (GBB), and the AIGenerated Occupational Exposure Index (GENOE)—to analyze patterns across countries and worker groups. We validate these measures by comparing task profiles between Latin America and high-income economies using PIAAC data, and develop a contextual adjustment that incorporates informality, wage structures, and union coverage. Finally, we simulate first-order impacts of AI-induced displacement on earnings, poverty, and inequality. The results show substantial heterogeneity, with higher levels of AI-related risk among women, younger, more educated, and formal workers. Indices that account for task complementarities show flatter gradients across the income and education distribution. Simulations suggest that displacement effects may lead to only moderate increases in inequality and poverty in the absence of mitigating policies.
Centro de Estudios Distributivos, Laborales y Sociales
description This paper investigates the potential distributional consequences of artificial intelligence (AI) adoption in Latin American labor markets. Using harmonized household survey data from 14 countries, we combine four recently developed AI occupational exposure indices—the AI Occupational Exposure Index (AIOE), the ComplementarityAdjusted AIOE (C-AIOE), the Generative AI Exposure Index (GBB), and the AIGenerated Occupational Exposure Index (GENOE)—to analyze patterns across countries and worker groups. We validate these measures by comparing task profiles between Latin America and high-income economies using PIAAC data, and develop a contextual adjustment that incorporates informality, wage structures, and union coverage. Finally, we simulate first-order impacts of AI-induced displacement on earnings, poverty, and inequality. The results show substantial heterogeneity, with higher levels of AI-related risk among women, younger, more educated, and formal workers. Indices that account for task complementarities show flatter gradients across the income and education distribution. Simulations suggest that displacement effects may lead to only moderate increases in inequality and poverty in the absence of mitigating policies.
publishDate 2025
dc.date.none.fl_str_mv 2025-12
dc.type.none.fl_str_mv info:eu-repo/semantics/workingPaper
info:eu-repo/semantics/submittedVersion
Documento de trabajo
http://purl.org/coar/resource_type/c_8042
info:ar-repo/semantics/documentoDeTrabajo
format workingPaper
status_str submittedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/188465
url http://sedici.unlp.edu.ar/handle/10915/188465
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.cedlas.econo.unlp.edu.ar/wp/no-361/
info:eu-repo/semantics/altIdentifier/issn/1853-0168
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1852334850451701760
score 12.952241