The Potential Distributive Impact of AI-driven Labor Changes in Latin America
- Autores
- Ciaschi, Matías Omar; Falcone, Guillermo; Garganta, Santiago; Gasparini, Leonardo Carlos; Bertín, Octavio; Ramírez Leira, Lucía
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- documento de trabajo
- Estado
- versión enviada
- Descripción
- This paper investigates the potential distributional consequences of artificial intelligence (AI) adoption in Latin American labor markets. Using harmonized household survey data from 14 countries, we combine four recently developed AI occupational exposure indices—the AI Occupational Exposure Index (AIOE), the ComplementarityAdjusted AIOE (C-AIOE), the Generative AI Exposure Index (GBB), and the AIGenerated Occupational Exposure Index (GENOE)—to analyze patterns across countries and worker groups. We validate these measures by comparing task profiles between Latin America and high-income economies using PIAAC data, and develop a contextual adjustment that incorporates informality, wage structures, and union coverage. Finally, we simulate first-order impacts of AI-induced displacement on earnings, poverty, and inequality. The results show substantial heterogeneity, with higher levels of AI-related risk among women, younger, more educated, and formal workers. Indices that account for task complementarities show flatter gradients across the income and education distribution. Simulations suggest that displacement effects may lead to only moderate increases in inequality and poverty in the absence of mitigating policies.
Centro de Estudios Distributivos, Laborales y Sociales - Materia
-
Ciencias Económicas
Artificial Intelligence
Labor Market
Income Distribution
Latin America - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/188465
Ver los metadatos del registro completo
| id |
SEDICI_ce1cfab534ab1fa6961c918fc685feac |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/188465 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
The Potential Distributive Impact of AI-driven Labor Changes in Latin AmericaCiaschi, Matías OmarFalcone, GuillermoGarganta, SantiagoGasparini, Leonardo CarlosBertín, OctavioRamírez Leira, LucíaCiencias EconómicasArtificial IntelligenceLabor MarketIncome DistributionLatin AmericaThis paper investigates the potential distributional consequences of artificial intelligence (AI) adoption in Latin American labor markets. Using harmonized household survey data from 14 countries, we combine four recently developed AI occupational exposure indices—the AI Occupational Exposure Index (AIOE), the ComplementarityAdjusted AIOE (C-AIOE), the Generative AI Exposure Index (GBB), and the AIGenerated Occupational Exposure Index (GENOE)—to analyze patterns across countries and worker groups. We validate these measures by comparing task profiles between Latin America and high-income economies using PIAAC data, and develop a contextual adjustment that incorporates informality, wage structures, and union coverage. Finally, we simulate first-order impacts of AI-induced displacement on earnings, poverty, and inequality. The results show substantial heterogeneity, with higher levels of AI-related risk among women, younger, more educated, and formal workers. Indices that account for task complementarities show flatter gradients across the income and education distribution. Simulations suggest that displacement effects may lead to only moderate increases in inequality and poverty in the absence of mitigating policies.Centro de Estudios Distributivos, Laborales y Sociales2025-12info:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/submittedVersionDocumento de trabajohttp://purl.org/coar/resource_type/c_8042info:ar-repo/semantics/documentoDeTrabajoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/188465enginfo:eu-repo/semantics/altIdentifier/url/https://www.cedlas.econo.unlp.edu.ar/wp/no-361/info:eu-repo/semantics/altIdentifier/issn/1853-0168info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-12-23T11:53:59Zoai:sedici.unlp.edu.ar:10915/188465Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-12-23 11:54:00.125SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
The Potential Distributive Impact of AI-driven Labor Changes in Latin America |
| title |
The Potential Distributive Impact of AI-driven Labor Changes in Latin America |
| spellingShingle |
The Potential Distributive Impact of AI-driven Labor Changes in Latin America Ciaschi, Matías Omar Ciencias Económicas Artificial Intelligence Labor Market Income Distribution Latin America |
| title_short |
The Potential Distributive Impact of AI-driven Labor Changes in Latin America |
| title_full |
The Potential Distributive Impact of AI-driven Labor Changes in Latin America |
| title_fullStr |
The Potential Distributive Impact of AI-driven Labor Changes in Latin America |
| title_full_unstemmed |
The Potential Distributive Impact of AI-driven Labor Changes in Latin America |
| title_sort |
The Potential Distributive Impact of AI-driven Labor Changes in Latin America |
| dc.creator.none.fl_str_mv |
Ciaschi, Matías Omar Falcone, Guillermo Garganta, Santiago Gasparini, Leonardo Carlos Bertín, Octavio Ramírez Leira, Lucía |
| author |
Ciaschi, Matías Omar |
| author_facet |
Ciaschi, Matías Omar Falcone, Guillermo Garganta, Santiago Gasparini, Leonardo Carlos Bertín, Octavio Ramírez Leira, Lucía |
| author_role |
author |
| author2 |
Falcone, Guillermo Garganta, Santiago Gasparini, Leonardo Carlos Bertín, Octavio Ramírez Leira, Lucía |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Ciencias Económicas Artificial Intelligence Labor Market Income Distribution Latin America |
| topic |
Ciencias Económicas Artificial Intelligence Labor Market Income Distribution Latin America |
| dc.description.none.fl_txt_mv |
This paper investigates the potential distributional consequences of artificial intelligence (AI) adoption in Latin American labor markets. Using harmonized household survey data from 14 countries, we combine four recently developed AI occupational exposure indices—the AI Occupational Exposure Index (AIOE), the ComplementarityAdjusted AIOE (C-AIOE), the Generative AI Exposure Index (GBB), and the AIGenerated Occupational Exposure Index (GENOE)—to analyze patterns across countries and worker groups. We validate these measures by comparing task profiles between Latin America and high-income economies using PIAAC data, and develop a contextual adjustment that incorporates informality, wage structures, and union coverage. Finally, we simulate first-order impacts of AI-induced displacement on earnings, poverty, and inequality. The results show substantial heterogeneity, with higher levels of AI-related risk among women, younger, more educated, and formal workers. Indices that account for task complementarities show flatter gradients across the income and education distribution. Simulations suggest that displacement effects may lead to only moderate increases in inequality and poverty in the absence of mitigating policies. Centro de Estudios Distributivos, Laborales y Sociales |
| description |
This paper investigates the potential distributional consequences of artificial intelligence (AI) adoption in Latin American labor markets. Using harmonized household survey data from 14 countries, we combine four recently developed AI occupational exposure indices—the AI Occupational Exposure Index (AIOE), the ComplementarityAdjusted AIOE (C-AIOE), the Generative AI Exposure Index (GBB), and the AIGenerated Occupational Exposure Index (GENOE)—to analyze patterns across countries and worker groups. We validate these measures by comparing task profiles between Latin America and high-income economies using PIAAC data, and develop a contextual adjustment that incorporates informality, wage structures, and union coverage. Finally, we simulate first-order impacts of AI-induced displacement on earnings, poverty, and inequality. The results show substantial heterogeneity, with higher levels of AI-related risk among women, younger, more educated, and formal workers. Indices that account for task complementarities show flatter gradients across the income and education distribution. Simulations suggest that displacement effects may lead to only moderate increases in inequality and poverty in the absence of mitigating policies. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/workingPaper info:eu-repo/semantics/submittedVersion Documento de trabajo http://purl.org/coar/resource_type/c_8042 info:ar-repo/semantics/documentoDeTrabajo |
| format |
workingPaper |
| status_str |
submittedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/188465 |
| url |
http://sedici.unlp.edu.ar/handle/10915/188465 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.cedlas.econo.unlp.edu.ar/wp/no-361/ info:eu-repo/semantics/altIdentifier/issn/1853-0168 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1852334850451701760 |
| score |
12.952241 |