Structure of force networks in tapped particulate systems of disks and pentagons : I. Clusters and loops

Autores
Pugnaloni, Luis Ariel; Carlevaro, Carlos Manuel; Kramár, M.; Mischaikow, K.; Kondic, L.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The force network of a granular assembly, defined by the contact network and the corresponding contact forces, carries valuable information about the state of the packing. Simple analysis of these networks based on the distribution of force strengths is rather insensitive to the changes in preparation protocols or to the types of particles. In this and the companion paper [Kondic, Phys. Rev. E 93, 062903 (2016)10.1103/PhysRevE.93.062903], we consider two-dimensional simulations of tapped systems built from frictional disks and pentagons, and study the structure of the force networks of granular packings by considering network's topology as force thresholds are varied. We show that the number of clusters and loops observed in the force networks as a function of the force threshold are markedly different for disks and pentagons if the tangential contact forces are considered, whereas they are surprisingly similar for the network defined by the normal forces. In particular, the results indicate that, overall, the force network is more heterogeneous for disks than for pentagons. Such differences in network properties are expected to lead to different macroscale response of the considered systems, despite the fact that averaged measures (such as force probability density function) do not show any obvious differences. Additionally, we show that the states obtained by tapping with different intensities that display similar packing fraction are difficult to distinguish based on simple topological invariants.
Instituto de Física de Líquidos y Sistemas Biológicos
Materia
Física
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/86778

id SEDICI_cbc5bdd066d04699d53c7a739ffe8a0c
oai_identifier_str oai:sedici.unlp.edu.ar:10915/86778
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Structure of force networks in tapped particulate systems of disks and pentagons : I. Clusters and loopsPugnaloni, Luis ArielCarlevaro, Carlos ManuelKramár, M.Mischaikow, K.Kondic, L.FísicaThe force network of a granular assembly, defined by the contact network and the corresponding contact forces, carries valuable information about the state of the packing. Simple analysis of these networks based on the distribution of force strengths is rather insensitive to the changes in preparation protocols or to the types of particles. In this and the companion paper [Kondic, Phys. Rev. E 93, 062903 (2016)10.1103/PhysRevE.93.062903], we consider two-dimensional simulations of tapped systems built from frictional disks and pentagons, and study the structure of the force networks of granular packings by considering network's topology as force thresholds are varied. We show that the number of clusters and loops observed in the force networks as a function of the force threshold are markedly different for disks and pentagons if the tangential contact forces are considered, whereas they are surprisingly similar for the network defined by the normal forces. In particular, the results indicate that, overall, the force network is more heterogeneous for disks than for pentagons. Such differences in network properties are expected to lead to different macroscale response of the considered systems, despite the fact that averaged measures (such as force probability density function) do not show any obvious differences. Additionally, we show that the states obtained by tapping with different intensities that display similar packing fraction are difficult to distinguish based on simple topological invariants.Instituto de Física de Líquidos y Sistemas Biológicos2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/86778enginfo:eu-repo/semantics/altIdentifier/issn/2470-0045info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.062902info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:45Zoai:sedici.unlp.edu.ar:10915/86778Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:45.504SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Structure of force networks in tapped particulate systems of disks and pentagons : I. Clusters and loops
title Structure of force networks in tapped particulate systems of disks and pentagons : I. Clusters and loops
spellingShingle Structure of force networks in tapped particulate systems of disks and pentagons : I. Clusters and loops
Pugnaloni, Luis Ariel
Física
title_short Structure of force networks in tapped particulate systems of disks and pentagons : I. Clusters and loops
title_full Structure of force networks in tapped particulate systems of disks and pentagons : I. Clusters and loops
title_fullStr Structure of force networks in tapped particulate systems of disks and pentagons : I. Clusters and loops
title_full_unstemmed Structure of force networks in tapped particulate systems of disks and pentagons : I. Clusters and loops
title_sort Structure of force networks in tapped particulate systems of disks and pentagons : I. Clusters and loops
dc.creator.none.fl_str_mv Pugnaloni, Luis Ariel
Carlevaro, Carlos Manuel
Kramár, M.
Mischaikow, K.
Kondic, L.
author Pugnaloni, Luis Ariel
author_facet Pugnaloni, Luis Ariel
Carlevaro, Carlos Manuel
Kramár, M.
Mischaikow, K.
Kondic, L.
author_role author
author2 Carlevaro, Carlos Manuel
Kramár, M.
Mischaikow, K.
Kondic, L.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Física
topic Física
dc.description.none.fl_txt_mv The force network of a granular assembly, defined by the contact network and the corresponding contact forces, carries valuable information about the state of the packing. Simple analysis of these networks based on the distribution of force strengths is rather insensitive to the changes in preparation protocols or to the types of particles. In this and the companion paper [Kondic, Phys. Rev. E 93, 062903 (2016)10.1103/PhysRevE.93.062903], we consider two-dimensional simulations of tapped systems built from frictional disks and pentagons, and study the structure of the force networks of granular packings by considering network's topology as force thresholds are varied. We show that the number of clusters and loops observed in the force networks as a function of the force threshold are markedly different for disks and pentagons if the tangential contact forces are considered, whereas they are surprisingly similar for the network defined by the normal forces. In particular, the results indicate that, overall, the force network is more heterogeneous for disks than for pentagons. Such differences in network properties are expected to lead to different macroscale response of the considered systems, despite the fact that averaged measures (such as force probability density function) do not show any obvious differences. Additionally, we show that the states obtained by tapping with different intensities that display similar packing fraction are difficult to distinguish based on simple topological invariants.
Instituto de Física de Líquidos y Sistemas Biológicos
description The force network of a granular assembly, defined by the contact network and the corresponding contact forces, carries valuable information about the state of the packing. Simple analysis of these networks based on the distribution of force strengths is rather insensitive to the changes in preparation protocols or to the types of particles. In this and the companion paper [Kondic, Phys. Rev. E 93, 062903 (2016)10.1103/PhysRevE.93.062903], we consider two-dimensional simulations of tapped systems built from frictional disks and pentagons, and study the structure of the force networks of granular packings by considering network's topology as force thresholds are varied. We show that the number of clusters and loops observed in the force networks as a function of the force threshold are markedly different for disks and pentagons if the tangential contact forces are considered, whereas they are surprisingly similar for the network defined by the normal forces. In particular, the results indicate that, overall, the force network is more heterogeneous for disks than for pentagons. Such differences in network properties are expected to lead to different macroscale response of the considered systems, despite the fact that averaged measures (such as force probability density function) do not show any obvious differences. Additionally, we show that the states obtained by tapping with different intensities that display similar packing fraction are difficult to distinguish based on simple topological invariants.
publishDate 2016
dc.date.none.fl_str_mv 2016
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/86778
url http://sedici.unlp.edu.ar/handle/10915/86778
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2470-0045
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.062902
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616040415232000
score 13.070432