Disentangling the metallicity and star formation history of H ii galaxies through tailor-made models

Autores
Pérez Montero, Enrique; García Benito, Rubén; Hägele, Guillermo Federico; Díaz Beltrán, Ángeles Isabel
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present a self-consistent study of the stellar populations and the ionized gas in a sample of 10 H ii galaxies with, at least, four measured electron temperatures and a precise determination of ionic abundances following the 'direct method'. We fitted the spectral energy distribution of the galaxies using the program starlight and starburst99 libraries in order to quantify the contribution of the underlying stellar population to the equivalent width of Hβ [EW(Hβ)], which amounts to about 10 per cent for most of the objects. We then studied the Wolf-Rayet (WR) stellar populations detected in seven of the galaxies. The presence of these populations and the EW(Hβ) values, once corrected for the continuum contribution from underlying stars and ultravoilet dust absorption, indicate that the ionizing stellar populations were created following a continuous star formation episode of 10 Myr duration, hence WR stars may be present in all of objects even if they are not detected in some of them.The derived stellar features, the number of ionizing photons and the relative intensities of the most prominent emission lines were used as input parameters to compute tailored models with the photoionization code cloudy. Our models are able to adequately reproduce the thermal and ionization structure of these galaxies as deduced from their collisionally excited emission lines. This indicates that ionic abundances can be derived following the 'direct method' if the thermal structure of the ionized gas is well traced, hence no abundance discrepancy factors are implied for this kind of objects. Only the electron temperature of S+ is overestimated by the models, with the corresponding underestimate of its abundance, pointing to the possible presence of outer shells of diffuse gas in these objects that have not been taken into account in our models. This kind of geometrical effects can affect the determination of the equivalent effective temperature of the ionizing cluster using calibrators which depend on low-excitation emission lines.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Galaxies: starburst
Galaxies: stellar content
H ii regions
ISM: abundances
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/82541

id SEDICI_cb102100c601908e374f7e61e7456e58
oai_identifier_str oai:sedici.unlp.edu.ar:10915/82541
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Disentangling the metallicity and star formation history of H ii galaxies through tailor-made modelsPérez Montero, EnriqueGarcía Benito, RubénHägele, Guillermo FedericoDíaz Beltrán, Ángeles IsabelCiencias AstronómicasGalaxies: starburstGalaxies: stellar contentH ii regionsISM: abundancesWe present a self-consistent study of the stellar populations and the ionized gas in a sample of 10 H ii galaxies with, at least, four measured electron temperatures and a precise determination of ionic abundances following the 'direct method'. We fitted the spectral energy distribution of the galaxies using the program starlight and starburst99 libraries in order to quantify the contribution of the underlying stellar population to the equivalent width of Hβ [EW(Hβ)], which amounts to about 10 per cent for most of the objects. We then studied the Wolf-Rayet (WR) stellar populations detected in seven of the galaxies. The presence of these populations and the EW(Hβ) values, once corrected for the continuum contribution from underlying stars and ultravoilet dust absorption, indicate that the ionizing stellar populations were created following a continuous star formation episode of 10 Myr duration, hence WR stars may be present in all of objects even if they are not detected in some of them.The derived stellar features, the number of ionizing photons and the relative intensities of the most prominent emission lines were used as input parameters to compute tailored models with the photoionization code cloudy. Our models are able to adequately reproduce the thermal and ionization structure of these galaxies as deduced from their collisionally excited emission lines. This indicates that ionic abundances can be derived following the 'direct method' if the thermal structure of the ionized gas is well traced, hence no abundance discrepancy factors are implied for this kind of objects. Only the electron temperature of S+ is overestimated by the models, with the corresponding underestimate of its abundance, pointing to the possible presence of outer shells of diffuse gas in these objects that have not been taken into account in our models. This kind of geometrical effects can affect the determination of the equivalent effective temperature of the ionizing cluster using calibrators which depend on low-excitation emission lines.Facultad de Ciencias Astronómicas y Geofísicas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2037-2055http://sedici.unlp.edu.ar/handle/10915/82541enginfo:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2010.16421.xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:07:23Zoai:sedici.unlp.edu.ar:10915/82541Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:07:24.09SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Disentangling the metallicity and star formation history of H ii galaxies through tailor-made models
title Disentangling the metallicity and star formation history of H ii galaxies through tailor-made models
spellingShingle Disentangling the metallicity and star formation history of H ii galaxies through tailor-made models
Pérez Montero, Enrique
Ciencias Astronómicas
Galaxies: starburst
Galaxies: stellar content
H ii regions
ISM: abundances
title_short Disentangling the metallicity and star formation history of H ii galaxies through tailor-made models
title_full Disentangling the metallicity and star formation history of H ii galaxies through tailor-made models
title_fullStr Disentangling the metallicity and star formation history of H ii galaxies through tailor-made models
title_full_unstemmed Disentangling the metallicity and star formation history of H ii galaxies through tailor-made models
title_sort Disentangling the metallicity and star formation history of H ii galaxies through tailor-made models
dc.creator.none.fl_str_mv Pérez Montero, Enrique
García Benito, Rubén
Hägele, Guillermo Federico
Díaz Beltrán, Ángeles Isabel
author Pérez Montero, Enrique
author_facet Pérez Montero, Enrique
García Benito, Rubén
Hägele, Guillermo Federico
Díaz Beltrán, Ángeles Isabel
author_role author
author2 García Benito, Rubén
Hägele, Guillermo Federico
Díaz Beltrán, Ángeles Isabel
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Galaxies: starburst
Galaxies: stellar content
H ii regions
ISM: abundances
topic Ciencias Astronómicas
Galaxies: starburst
Galaxies: stellar content
H ii regions
ISM: abundances
dc.description.none.fl_txt_mv We present a self-consistent study of the stellar populations and the ionized gas in a sample of 10 H ii galaxies with, at least, four measured electron temperatures and a precise determination of ionic abundances following the 'direct method'. We fitted the spectral energy distribution of the galaxies using the program starlight and starburst99 libraries in order to quantify the contribution of the underlying stellar population to the equivalent width of Hβ [EW(Hβ)], which amounts to about 10 per cent for most of the objects. We then studied the Wolf-Rayet (WR) stellar populations detected in seven of the galaxies. The presence of these populations and the EW(Hβ) values, once corrected for the continuum contribution from underlying stars and ultravoilet dust absorption, indicate that the ionizing stellar populations were created following a continuous star formation episode of 10 Myr duration, hence WR stars may be present in all of objects even if they are not detected in some of them.The derived stellar features, the number of ionizing photons and the relative intensities of the most prominent emission lines were used as input parameters to compute tailored models with the photoionization code cloudy. Our models are able to adequately reproduce the thermal and ionization structure of these galaxies as deduced from their collisionally excited emission lines. This indicates that ionic abundances can be derived following the 'direct method' if the thermal structure of the ionized gas is well traced, hence no abundance discrepancy factors are implied for this kind of objects. Only the electron temperature of S+ is overestimated by the models, with the corresponding underestimate of its abundance, pointing to the possible presence of outer shells of diffuse gas in these objects that have not been taken into account in our models. This kind of geometrical effects can affect the determination of the equivalent effective temperature of the ionizing cluster using calibrators which depend on low-excitation emission lines.
Facultad de Ciencias Astronómicas y Geofísicas
description We present a self-consistent study of the stellar populations and the ionized gas in a sample of 10 H ii galaxies with, at least, four measured electron temperatures and a precise determination of ionic abundances following the 'direct method'. We fitted the spectral energy distribution of the galaxies using the program starlight and starburst99 libraries in order to quantify the contribution of the underlying stellar population to the equivalent width of Hβ [EW(Hβ)], which amounts to about 10 per cent for most of the objects. We then studied the Wolf-Rayet (WR) stellar populations detected in seven of the galaxies. The presence of these populations and the EW(Hβ) values, once corrected for the continuum contribution from underlying stars and ultravoilet dust absorption, indicate that the ionizing stellar populations were created following a continuous star formation episode of 10 Myr duration, hence WR stars may be present in all of objects even if they are not detected in some of them.The derived stellar features, the number of ionizing photons and the relative intensities of the most prominent emission lines were used as input parameters to compute tailored models with the photoionization code cloudy. Our models are able to adequately reproduce the thermal and ionization structure of these galaxies as deduced from their collisionally excited emission lines. This indicates that ionic abundances can be derived following the 'direct method' if the thermal structure of the ionized gas is well traced, hence no abundance discrepancy factors are implied for this kind of objects. Only the electron temperature of S+ is overestimated by the models, with the corresponding underestimate of its abundance, pointing to the possible presence of outer shells of diffuse gas in these objects that have not been taken into account in our models. This kind of geometrical effects can affect the determination of the equivalent effective temperature of the ionizing cluster using calibrators which depend on low-excitation emission lines.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/82541
url http://sedici.unlp.edu.ar/handle/10915/82541
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0035-8711
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2010.16421.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
2037-2055
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064130047344640
score 13.22299