Arquitecturas multiprocesador en HPC: software de base, métricas y aplicaciones
- Autores
- De Giusti, Armando Eduardo; Tinetti, Fernando Gustavo; Naiouf, Marcelo; Chichizola, Franco; De Giusti, Laura Cristina; Villagarcía Wanza, Horacio A.; Montezanti, Diego Miguel; Frati, Fernando Emmanuel; Pousa, Adrián; Rodriguez, Ismael Pablo; Denham, Mónica Malén; Iglesias, Luciano
- Año de publicación
- 2013
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Caracterizar las arquitecturas multiprocesador distribuidas enfocadas especialmente a cluster y cloud computing, con énfasis en las que utilizan procesadores de múltiples núcleos (multicores y GPUs), con el objetivo de modelizarlas, estudiar su escalabilidad, analizar y predecir performance de aplicaciones paralelas y desarrollar esquemas de tolerancia a fallas en las mismas. Profundizar el estudio de arquitecturas basadas en GPUs y su comparación con clusters de multicores, así como el empleo combinado de GPUs y multicores en computadoras de alta perfomance. Analizar la eficiencia energética en estas arquitecturas paralelas, considerando el impacto de la arquitectura, el sistema operativo, el modelo de programación y el algoritmo específico. Analizar y desarrollar software de base para clusters de multicores y GPUs, tratando de optimizar el rendimiento. En el año 2012 se han agregado dos líneas de interés: - El estudio de clusters híbridos, que combinen multicores y GPUs. - La utilización de los registros de hardware de los procesadores para la toma de diferentes decisiones en tiempo de ejecución. Es de hacer notar que este proyecto se coordina con otros dos proyectos en curso en el III-LIDI, relacionados con Algoritmos Distribuidos/Paralelos y Sistemas de Software Distribuido.
Eje: Procesamiento Distribuido y Paralelo
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Distributed architectures
Graphics processors
Scheduling
Fault-tolerance - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/27293
Ver los metadatos del registro completo
id |
SEDICI_cabb7220c454397683a29eaff0f41b3d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/27293 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Arquitecturas multiprocesador en HPC: software de base, métricas y aplicacionesDe Giusti, Armando EduardoTinetti, Fernando GustavoNaiouf, MarceloChichizola, FrancoDe Giusti, Laura CristinaVillagarcía Wanza, Horacio A.Montezanti, Diego MiguelFrati, Fernando EmmanuelPousa, AdriánRodriguez, Ismael PabloDenham, Mónica MalénIglesias, LucianoCiencias InformáticasDistributed architecturesGraphics processorsSchedulingFault-toleranceCaracterizar las arquitecturas multiprocesador distribuidas enfocadas especialmente a cluster y cloud computing, con énfasis en las que utilizan procesadores de múltiples núcleos (multicores y GPUs), con el objetivo de modelizarlas, estudiar su escalabilidad, analizar y predecir performance de aplicaciones paralelas y desarrollar esquemas de tolerancia a fallas en las mismas. Profundizar el estudio de arquitecturas basadas en GPUs y su comparación con clusters de multicores, así como el empleo combinado de GPUs y multicores en computadoras de alta perfomance. Analizar la eficiencia energética en estas arquitecturas paralelas, considerando el impacto de la arquitectura, el sistema operativo, el modelo de programación y el algoritmo específico. Analizar y desarrollar software de base para clusters de multicores y GPUs, tratando de optimizar el rendimiento. En el año 2012 se han agregado dos líneas de interés: - El estudio de clusters híbridos, que combinen multicores y GPUs. - La utilización de los registros de hardware de los procesadores para la toma de diferentes decisiones en tiempo de ejecución. Es de hacer notar que este proyecto se coordina con otros dos proyectos en curso en el III-LIDI, relacionados con Algoritmos Distribuidos/Paralelos y Sistemas de Software Distribuido.Eje: Procesamiento Distribuido y ParaleloRed de Universidades con Carreras en Informática (RedUNCI)2013-04info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf685-689http://sedici.unlp.edu.ar/handle/10915/27293spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:40:13Zoai:sedici.unlp.edu.ar:10915/27293Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:40:13.608SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Arquitecturas multiprocesador en HPC: software de base, métricas y aplicaciones |
title |
Arquitecturas multiprocesador en HPC: software de base, métricas y aplicaciones |
spellingShingle |
Arquitecturas multiprocesador en HPC: software de base, métricas y aplicaciones De Giusti, Armando Eduardo Ciencias Informáticas Distributed architectures Graphics processors Scheduling Fault-tolerance |
title_short |
Arquitecturas multiprocesador en HPC: software de base, métricas y aplicaciones |
title_full |
Arquitecturas multiprocesador en HPC: software de base, métricas y aplicaciones |
title_fullStr |
Arquitecturas multiprocesador en HPC: software de base, métricas y aplicaciones |
title_full_unstemmed |
Arquitecturas multiprocesador en HPC: software de base, métricas y aplicaciones |
title_sort |
Arquitecturas multiprocesador en HPC: software de base, métricas y aplicaciones |
dc.creator.none.fl_str_mv |
De Giusti, Armando Eduardo Tinetti, Fernando Gustavo Naiouf, Marcelo Chichizola, Franco De Giusti, Laura Cristina Villagarcía Wanza, Horacio A. Montezanti, Diego Miguel Frati, Fernando Emmanuel Pousa, Adrián Rodriguez, Ismael Pablo Denham, Mónica Malén Iglesias, Luciano |
author |
De Giusti, Armando Eduardo |
author_facet |
De Giusti, Armando Eduardo Tinetti, Fernando Gustavo Naiouf, Marcelo Chichizola, Franco De Giusti, Laura Cristina Villagarcía Wanza, Horacio A. Montezanti, Diego Miguel Frati, Fernando Emmanuel Pousa, Adrián Rodriguez, Ismael Pablo Denham, Mónica Malén Iglesias, Luciano |
author_role |
author |
author2 |
Tinetti, Fernando Gustavo Naiouf, Marcelo Chichizola, Franco De Giusti, Laura Cristina Villagarcía Wanza, Horacio A. Montezanti, Diego Miguel Frati, Fernando Emmanuel Pousa, Adrián Rodriguez, Ismael Pablo Denham, Mónica Malén Iglesias, Luciano |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Distributed architectures Graphics processors Scheduling Fault-tolerance |
topic |
Ciencias Informáticas Distributed architectures Graphics processors Scheduling Fault-tolerance |
dc.description.none.fl_txt_mv |
Caracterizar las arquitecturas multiprocesador distribuidas enfocadas especialmente a cluster y cloud computing, con énfasis en las que utilizan procesadores de múltiples núcleos (multicores y GPUs), con el objetivo de modelizarlas, estudiar su escalabilidad, analizar y predecir performance de aplicaciones paralelas y desarrollar esquemas de tolerancia a fallas en las mismas. Profundizar el estudio de arquitecturas basadas en GPUs y su comparación con clusters de multicores, así como el empleo combinado de GPUs y multicores en computadoras de alta perfomance. Analizar la eficiencia energética en estas arquitecturas paralelas, considerando el impacto de la arquitectura, el sistema operativo, el modelo de programación y el algoritmo específico. Analizar y desarrollar software de base para clusters de multicores y GPUs, tratando de optimizar el rendimiento. En el año 2012 se han agregado dos líneas de interés: - El estudio de clusters híbridos, que combinen multicores y GPUs. - La utilización de los registros de hardware de los procesadores para la toma de diferentes decisiones en tiempo de ejecución. Es de hacer notar que este proyecto se coordina con otros dos proyectos en curso en el III-LIDI, relacionados con Algoritmos Distribuidos/Paralelos y Sistemas de Software Distribuido. Eje: Procesamiento Distribuido y Paralelo Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Caracterizar las arquitecturas multiprocesador distribuidas enfocadas especialmente a cluster y cloud computing, con énfasis en las que utilizan procesadores de múltiples núcleos (multicores y GPUs), con el objetivo de modelizarlas, estudiar su escalabilidad, analizar y predecir performance de aplicaciones paralelas y desarrollar esquemas de tolerancia a fallas en las mismas. Profundizar el estudio de arquitecturas basadas en GPUs y su comparación con clusters de multicores, así como el empleo combinado de GPUs y multicores en computadoras de alta perfomance. Analizar la eficiencia energética en estas arquitecturas paralelas, considerando el impacto de la arquitectura, el sistema operativo, el modelo de programación y el algoritmo específico. Analizar y desarrollar software de base para clusters de multicores y GPUs, tratando de optimizar el rendimiento. En el año 2012 se han agregado dos líneas de interés: - El estudio de clusters híbridos, que combinen multicores y GPUs. - La utilización de los registros de hardware de los procesadores para la toma de diferentes decisiones en tiempo de ejecución. Es de hacer notar que este proyecto se coordina con otros dos proyectos en curso en el III-LIDI, relacionados con Algoritmos Distribuidos/Paralelos y Sistemas de Software Distribuido. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/27293 |
url |
http://sedici.unlp.edu.ar/handle/10915/27293 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 685-689 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532083945799680 |
score |
13.001348 |