Chemical evolution using smooth particle hydrodynamical cosmological simulations - I. Implementation, tests and first results

Autores
Mosconi, M. B.; Tissera, Patricia Beatriz; Garcia Lambas, Diego Rodolfo; Cora, Sofía Alejandra
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop a model to implement metal enrichment in a cosmological context based on the hydrodynamical code AP3MSPH described by Tissera, Lambas and Abadi. The star formation model is based on the Schmidt law, and has been modified in order to describe the transformation of gas into stars in more detail. The enrichment of the interstellar medium resulting from Type I and II supernovae explosions is taken into account by assuming a Salpeter initial mass function and different nucleosynthesis models. The various chemical elements are mixed within the gaseous medium according to the smooth particle hydrodynamics technique. Gas particles can be enriched by different neighbouring particles at the same time. We present tests of the code that assess the effects of resolution and model parameters on the results. We show that the main effect of low numerical resolution is to produce a more effective mixing of elements, resulting in abundance relations with less dispersion. We have performed cosmological simulations in a standard cold dark matter scenario, and we present results of the analysis of the star formation and chemical properties of the interstellar medium and stellar population of the simulated galactic objects. We show that these systems reproduce the abundance ratios for primary and secondary elements of the interstellar medium, and the correlation between the (O/H) abundance and the gas fraction of galaxies. We find that the star formation efficiency, the relative rate of Type II supernovae to Type I supernovae and the lifetime of binary systems, as well as the stellar nucleosynthesis model adopted, affect the chemical properties of baryons. We have compared the results of the simulations with an implementation of the one-zone simple model, finding significant differences in the global metallicities of the stars and gas as well as their correlations with dynamical parameters of the systems. The numerical simulations performed provide a detailed description of the chemical properties of galactic objects formed in hierarchical clustering scenarios and prove to be useful tools to deepen our understanding of galaxy formation and evolution.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Hidrodynamics
Methods: numerical
Galaxies: abundances
Galaxies: evolution
Galaxies: formation
Cosmology: theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/101617

id SEDICI_ca02fbc19365b550894dc0bd175160e9
oai_identifier_str oai:sedici.unlp.edu.ar:10915/101617
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Chemical evolution using smooth particle hydrodynamical cosmological simulations - I. Implementation, tests and first resultsMosconi, M. B.Tissera, Patricia BeatrizGarcia Lambas, Diego RodolfoCora, Sofía AlejandraCiencias AstronómicasHidrodynamicsMethods: numericalGalaxies: abundancesGalaxies: evolutionGalaxies: formationCosmology: theoryWe develop a model to implement metal enrichment in a cosmological context based on the hydrodynamical code AP3MSPH described by Tissera, Lambas and Abadi. The star formation model is based on the Schmidt law, and has been modified in order to describe the transformation of gas into stars in more detail. The enrichment of the interstellar medium resulting from Type I and II supernovae explosions is taken into account by assuming a Salpeter initial mass function and different nucleosynthesis models. The various chemical elements are mixed within the gaseous medium according to the smooth particle hydrodynamics technique. Gas particles can be enriched by different neighbouring particles at the same time. We present tests of the code that assess the effects of resolution and model parameters on the results. We show that the main effect of low numerical resolution is to produce a more effective mixing of elements, resulting in abundance relations with less dispersion. We have performed cosmological simulations in a standard cold dark matter scenario, and we present results of the analysis of the star formation and chemical properties of the interstellar medium and stellar population of the simulated galactic objects. We show that these systems reproduce the abundance ratios for primary and secondary elements of the interstellar medium, and the correlation between the (O/H) abundance and the gas fraction of galaxies. We find that the star formation efficiency, the relative rate of Type II supernovae to Type I supernovae and the lifetime of binary systems, as well as the stellar nucleosynthesis model adopted, affect the chemical properties of baryons. We have compared the results of the simulations with an implementation of the one-zone simple model, finding significant differences in the global metallicities of the stars and gas as well as their correlations with dynamical parameters of the systems. The numerical simulations performed provide a detailed description of the chemical properties of galactic objects formed in hierarchical clustering scenarios and prove to be useful tools to deepen our understanding of galaxy formation and evolution.Facultad de Ciencias Astronómicas y Geofísicas2001-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf34-48http://sedici.unlp.edu.ar/handle/10915/101617enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/22481info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-lookup/doi/10.1046/j.1365-8711.2001.04198.xinfo:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/doi/10.1046/j.1365-8711.2001.04198.xinfo:eu-repo/semantics/altIdentifier/hdl/11336/22481info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-29T15:26:08Zoai:sedici.unlp.edu.ar:10915/101617Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-29 15:26:09.044SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Chemical evolution using smooth particle hydrodynamical cosmological simulations - I. Implementation, tests and first results
title Chemical evolution using smooth particle hydrodynamical cosmological simulations - I. Implementation, tests and first results
spellingShingle Chemical evolution using smooth particle hydrodynamical cosmological simulations - I. Implementation, tests and first results
Mosconi, M. B.
Ciencias Astronómicas
Hidrodynamics
Methods: numerical
Galaxies: abundances
Galaxies: evolution
Galaxies: formation
Cosmology: theory
title_short Chemical evolution using smooth particle hydrodynamical cosmological simulations - I. Implementation, tests and first results
title_full Chemical evolution using smooth particle hydrodynamical cosmological simulations - I. Implementation, tests and first results
title_fullStr Chemical evolution using smooth particle hydrodynamical cosmological simulations - I. Implementation, tests and first results
title_full_unstemmed Chemical evolution using smooth particle hydrodynamical cosmological simulations - I. Implementation, tests and first results
title_sort Chemical evolution using smooth particle hydrodynamical cosmological simulations - I. Implementation, tests and first results
dc.creator.none.fl_str_mv Mosconi, M. B.
Tissera, Patricia Beatriz
Garcia Lambas, Diego Rodolfo
Cora, Sofía Alejandra
author Mosconi, M. B.
author_facet Mosconi, M. B.
Tissera, Patricia Beatriz
Garcia Lambas, Diego Rodolfo
Cora, Sofía Alejandra
author_role author
author2 Tissera, Patricia Beatriz
Garcia Lambas, Diego Rodolfo
Cora, Sofía Alejandra
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Hidrodynamics
Methods: numerical
Galaxies: abundances
Galaxies: evolution
Galaxies: formation
Cosmology: theory
topic Ciencias Astronómicas
Hidrodynamics
Methods: numerical
Galaxies: abundances
Galaxies: evolution
Galaxies: formation
Cosmology: theory
dc.description.none.fl_txt_mv We develop a model to implement metal enrichment in a cosmological context based on the hydrodynamical code AP3MSPH described by Tissera, Lambas and Abadi. The star formation model is based on the Schmidt law, and has been modified in order to describe the transformation of gas into stars in more detail. The enrichment of the interstellar medium resulting from Type I and II supernovae explosions is taken into account by assuming a Salpeter initial mass function and different nucleosynthesis models. The various chemical elements are mixed within the gaseous medium according to the smooth particle hydrodynamics technique. Gas particles can be enriched by different neighbouring particles at the same time. We present tests of the code that assess the effects of resolution and model parameters on the results. We show that the main effect of low numerical resolution is to produce a more effective mixing of elements, resulting in abundance relations with less dispersion. We have performed cosmological simulations in a standard cold dark matter scenario, and we present results of the analysis of the star formation and chemical properties of the interstellar medium and stellar population of the simulated galactic objects. We show that these systems reproduce the abundance ratios for primary and secondary elements of the interstellar medium, and the correlation between the (O/H) abundance and the gas fraction of galaxies. We find that the star formation efficiency, the relative rate of Type II supernovae to Type I supernovae and the lifetime of binary systems, as well as the stellar nucleosynthesis model adopted, affect the chemical properties of baryons. We have compared the results of the simulations with an implementation of the one-zone simple model, finding significant differences in the global metallicities of the stars and gas as well as their correlations with dynamical parameters of the systems. The numerical simulations performed provide a detailed description of the chemical properties of galactic objects formed in hierarchical clustering scenarios and prove to be useful tools to deepen our understanding of galaxy formation and evolution.
Facultad de Ciencias Astronómicas y Geofísicas
description We develop a model to implement metal enrichment in a cosmological context based on the hydrodynamical code AP3MSPH described by Tissera, Lambas and Abadi. The star formation model is based on the Schmidt law, and has been modified in order to describe the transformation of gas into stars in more detail. The enrichment of the interstellar medium resulting from Type I and II supernovae explosions is taken into account by assuming a Salpeter initial mass function and different nucleosynthesis models. The various chemical elements are mixed within the gaseous medium according to the smooth particle hydrodynamics technique. Gas particles can be enriched by different neighbouring particles at the same time. We present tests of the code that assess the effects of resolution and model parameters on the results. We show that the main effect of low numerical resolution is to produce a more effective mixing of elements, resulting in abundance relations with less dispersion. We have performed cosmological simulations in a standard cold dark matter scenario, and we present results of the analysis of the star formation and chemical properties of the interstellar medium and stellar population of the simulated galactic objects. We show that these systems reproduce the abundance ratios for primary and secondary elements of the interstellar medium, and the correlation between the (O/H) abundance and the gas fraction of galaxies. We find that the star formation efficiency, the relative rate of Type II supernovae to Type I supernovae and the lifetime of binary systems, as well as the stellar nucleosynthesis model adopted, affect the chemical properties of baryons. We have compared the results of the simulations with an implementation of the one-zone simple model, finding significant differences in the global metallicities of the stars and gas as well as their correlations with dynamical parameters of the systems. The numerical simulations performed provide a detailed description of the chemical properties of galactic objects formed in hierarchical clustering scenarios and prove to be useful tools to deepen our understanding of galaxy formation and evolution.
publishDate 2001
dc.date.none.fl_str_mv 2001-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/101617
url http://sedici.unlp.edu.ar/handle/10915/101617
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/22481
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-lookup/doi/10.1046/j.1365-8711.2001.04198.x
info:eu-repo/semantics/altIdentifier/issn/0035-8711
info:eu-repo/semantics/altIdentifier/doi/10.1046/j.1365-8711.2001.04198.x
info:eu-repo/semantics/altIdentifier/hdl/11336/22481
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
34-48
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1847428271272099840
score 13.10058