Formulación del LPIM en base a las leyes fundamentales del plasma ionosférico
- Autores
- Camilion, Emilio
- Año de publicación
- 2013
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Brunini, Claudio Antonio
Azpilicueta, Francisco
Gende, Mauricio
Rodriguez, Rodolfo
Torre, Alejandro de la - Descripción
- El trabajo realizado en esta tesis doctoral se basa en caracterizar la variabilidad espacial y temporal que presenta el plasma que se encuentra en la alta atmósfera, región conocida como la ionosfera, mediante el modelado de las leyes físicas que rigen su comportamiento. El parámetro más relevante a la hora de estudiar a la ionosfera es la densidad de electrones, cuya presencia se debe a la ionización de varias de las componentes neutras de la atmósfera al absorber la radiación solar ultravioleta, dando como resultado pares de electrón-ion libre. Luego, como por cada electrón existente en la ionosfera se encuentra un ion, la densidad de electrones libre es simplemente igual a la suma sobre las densidades de las distintas especies ionizadas. Dado que la distribución de los iones es inhomogénea respecto de la altura, la densidad de los electrones está controlada por distintas especies en función de la altura. Por esta razón, en lugar de tratar de modelar de manera directa la densidad de electrones, se la modela de manera indirecta, al calcular la densidad de las especies ionizadas. Este procedimiento permite un mejor entendimiento de los distintos procesos físicos y químicos que suceden en las distintas regiones de la ionosfera. Para este trabajo se eligío modelar 7 especies ionizadas que abarcan las diferentes regiones de la ionosfera: NO+, N2 + y O2 + para modelar la región E y la parte baja de la región F, el O+ y el N+ para modelar la región F y el He+ y el H+ para modelar la región por encima de la capa F. La ecuación que regula el comportamiento de la densidad es la llamada “ecuación de continuidad”, en la que se tiene en cuenta varios procesos: i) la producción de iones por fotoionización y reacciones de intercambio, ii) la pérdida de iones debido a interacciones químicas con los electrones y con los elementos neutros de la atmósfera, iii) efectos de transporte por movimientos convectivos originados en la interacción entre el campo magnético terrestre, los campos eléctricos presentes en la ionosfera y la acción de los vientos neutros. Se elige un sistema coordenado asociado con el campo magnético de la Tierra lo que permite llevar el problema de 3 dimensiones a 2 dimensiones y presenta la ventaja de desacoplar los movimientos en las direcciones paralela y perpendicular a las líneas de campo magnético. Como las especies ionizadas interactúan entre si a través de reacciones químicas y de colisiones, las ecuaciones para cada especie están acopladas y es necesario resolver el sistema en forma simultánea. De este manera, el sistema a resolver queda conformado por ecuaciones diferenciales parciales en su forma conservativa. Se utiliza el Método de Volúmenes Finitos con un esquema de upwind para su resolución. El resultado final es un modelo que permite estimar el comportamiento que presenta la ionosfera a latitudes bajas y medias a través de la evolución temporal y espacial de las densidades para 7 especies ionizadas y para los electrones sin la necesidad de alimentarlas con mediciones.
Doctor en Geofísica
Universidad Nacional de La Plata
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Geofísica
Ionosfera
ionización
investigación ionosférica
Modelos Teóricos
modelización
La Plata Ionospheric Model (LPIM) - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/26592
Ver los metadatos del registro completo
id |
SEDICI_c91c1c0ef55fe78b69657d4cd37cadea |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/26592 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Formulación del LPIM en base a las leyes fundamentales del plasma ionosféricoCamilion, EmilioGeofísicaIonosferaionizacióninvestigación ionosféricaModelos TeóricosmodelizaciónLa Plata Ionospheric Model (LPIM)El trabajo realizado en esta tesis doctoral se basa en caracterizar la variabilidad espacial y temporal que presenta el plasma que se encuentra en la alta atmósfera, región conocida como la ionosfera, mediante el modelado de las leyes físicas que rigen su comportamiento. El parámetro más relevante a la hora de estudiar a la ionosfera es la densidad de electrones, cuya presencia se debe a la ionización de varias de las componentes neutras de la atmósfera al absorber la radiación solar ultravioleta, dando como resultado pares de electrón-ion libre. Luego, como por cada electrón existente en la ionosfera se encuentra un ion, la densidad de electrones libre es simplemente igual a la suma sobre las densidades de las distintas especies ionizadas. Dado que la distribución de los iones es inhomogénea respecto de la altura, la densidad de los electrones está controlada por distintas especies en función de la altura. Por esta razón, en lugar de tratar de modelar de manera directa la densidad de electrones, se la modela de manera indirecta, al calcular la densidad de las especies ionizadas. Este procedimiento permite un mejor entendimiento de los distintos procesos físicos y químicos que suceden en las distintas regiones de la ionosfera. Para este trabajo se eligío modelar 7 especies ionizadas que abarcan las diferentes regiones de la ionosfera: NO+, N2 + y O2 + para modelar la región E y la parte baja de la región F, el O+ y el N+ para modelar la región F y el He+ y el H+ para modelar la región por encima de la capa F. La ecuación que regula el comportamiento de la densidad es la llamada “ecuación de continuidad”, en la que se tiene en cuenta varios procesos: i) la producción de iones por fotoionización y reacciones de intercambio, ii) la pérdida de iones debido a interacciones químicas con los electrones y con los elementos neutros de la atmósfera, iii) efectos de transporte por movimientos convectivos originados en la interacción entre el campo magnético terrestre, los campos eléctricos presentes en la ionosfera y la acción de los vientos neutros. Se elige un sistema coordenado asociado con el campo magnético de la Tierra lo que permite llevar el problema de 3 dimensiones a 2 dimensiones y presenta la ventaja de desacoplar los movimientos en las direcciones paralela y perpendicular a las líneas de campo magnético. Como las especies ionizadas interactúan entre si a través de reacciones químicas y de colisiones, las ecuaciones para cada especie están acopladas y es necesario resolver el sistema en forma simultánea. De este manera, el sistema a resolver queda conformado por ecuaciones diferenciales parciales en su forma conservativa. Se utiliza el Método de Volúmenes Finitos con un esquema de <i>upwind</i> para su resolución. El resultado final es un modelo que permite estimar el comportamiento que presenta la ionosfera a latitudes bajas y medias a través de la evolución temporal y espacial de las densidades para 7 especies ionizadas y para los electrones sin la necesidad de alimentarlas con mediciones.Doctor en GeofísicaUniversidad Nacional de La PlataFacultad de Ciencias Astronómicas y GeofísicasBrunini, Claudio AntonioAzpilicueta, FranciscoGende, MauricioRodriguez, RodolfoTorre, Alejandro de la2013-03-27info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/26592https://doi.org/10.35537/10915/26592spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/2.5/ar/Creative Commons Attribution-ShareAlike 2.5 Argentina (CC BY-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:49:11Zoai:sedici.unlp.edu.ar:10915/26592Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:49:11.983SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Formulación del LPIM en base a las leyes fundamentales del plasma ionosférico |
title |
Formulación del LPIM en base a las leyes fundamentales del plasma ionosférico |
spellingShingle |
Formulación del LPIM en base a las leyes fundamentales del plasma ionosférico Camilion, Emilio Geofísica Ionosfera ionización investigación ionosférica Modelos Teóricos modelización La Plata Ionospheric Model (LPIM) |
title_short |
Formulación del LPIM en base a las leyes fundamentales del plasma ionosférico |
title_full |
Formulación del LPIM en base a las leyes fundamentales del plasma ionosférico |
title_fullStr |
Formulación del LPIM en base a las leyes fundamentales del plasma ionosférico |
title_full_unstemmed |
Formulación del LPIM en base a las leyes fundamentales del plasma ionosférico |
title_sort |
Formulación del LPIM en base a las leyes fundamentales del plasma ionosférico |
dc.creator.none.fl_str_mv |
Camilion, Emilio |
author |
Camilion, Emilio |
author_facet |
Camilion, Emilio |
author_role |
author |
dc.contributor.none.fl_str_mv |
Brunini, Claudio Antonio Azpilicueta, Francisco Gende, Mauricio Rodriguez, Rodolfo Torre, Alejandro de la |
dc.subject.none.fl_str_mv |
Geofísica Ionosfera ionización investigación ionosférica Modelos Teóricos modelización La Plata Ionospheric Model (LPIM) |
topic |
Geofísica Ionosfera ionización investigación ionosférica Modelos Teóricos modelización La Plata Ionospheric Model (LPIM) |
dc.description.none.fl_txt_mv |
El trabajo realizado en esta tesis doctoral se basa en caracterizar la variabilidad espacial y temporal que presenta el plasma que se encuentra en la alta atmósfera, región conocida como la ionosfera, mediante el modelado de las leyes físicas que rigen su comportamiento. El parámetro más relevante a la hora de estudiar a la ionosfera es la densidad de electrones, cuya presencia se debe a la ionización de varias de las componentes neutras de la atmósfera al absorber la radiación solar ultravioleta, dando como resultado pares de electrón-ion libre. Luego, como por cada electrón existente en la ionosfera se encuentra un ion, la densidad de electrones libre es simplemente igual a la suma sobre las densidades de las distintas especies ionizadas. Dado que la distribución de los iones es inhomogénea respecto de la altura, la densidad de los electrones está controlada por distintas especies en función de la altura. Por esta razón, en lugar de tratar de modelar de manera directa la densidad de electrones, se la modela de manera indirecta, al calcular la densidad de las especies ionizadas. Este procedimiento permite un mejor entendimiento de los distintos procesos físicos y químicos que suceden en las distintas regiones de la ionosfera. Para este trabajo se eligío modelar 7 especies ionizadas que abarcan las diferentes regiones de la ionosfera: NO+, N2 + y O2 + para modelar la región E y la parte baja de la región F, el O+ y el N+ para modelar la región F y el He+ y el H+ para modelar la región por encima de la capa F. La ecuación que regula el comportamiento de la densidad es la llamada “ecuación de continuidad”, en la que se tiene en cuenta varios procesos: i) la producción de iones por fotoionización y reacciones de intercambio, ii) la pérdida de iones debido a interacciones químicas con los electrones y con los elementos neutros de la atmósfera, iii) efectos de transporte por movimientos convectivos originados en la interacción entre el campo magnético terrestre, los campos eléctricos presentes en la ionosfera y la acción de los vientos neutros. Se elige un sistema coordenado asociado con el campo magnético de la Tierra lo que permite llevar el problema de 3 dimensiones a 2 dimensiones y presenta la ventaja de desacoplar los movimientos en las direcciones paralela y perpendicular a las líneas de campo magnético. Como las especies ionizadas interactúan entre si a través de reacciones químicas y de colisiones, las ecuaciones para cada especie están acopladas y es necesario resolver el sistema en forma simultánea. De este manera, el sistema a resolver queda conformado por ecuaciones diferenciales parciales en su forma conservativa. Se utiliza el Método de Volúmenes Finitos con un esquema de <i>upwind</i> para su resolución. El resultado final es un modelo que permite estimar el comportamiento que presenta la ionosfera a latitudes bajas y medias a través de la evolución temporal y espacial de las densidades para 7 especies ionizadas y para los electrones sin la necesidad de alimentarlas con mediciones. Doctor en Geofísica Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas |
description |
El trabajo realizado en esta tesis doctoral se basa en caracterizar la variabilidad espacial y temporal que presenta el plasma que se encuentra en la alta atmósfera, región conocida como la ionosfera, mediante el modelado de las leyes físicas que rigen su comportamiento. El parámetro más relevante a la hora de estudiar a la ionosfera es la densidad de electrones, cuya presencia se debe a la ionización de varias de las componentes neutras de la atmósfera al absorber la radiación solar ultravioleta, dando como resultado pares de electrón-ion libre. Luego, como por cada electrón existente en la ionosfera se encuentra un ion, la densidad de electrones libre es simplemente igual a la suma sobre las densidades de las distintas especies ionizadas. Dado que la distribución de los iones es inhomogénea respecto de la altura, la densidad de los electrones está controlada por distintas especies en función de la altura. Por esta razón, en lugar de tratar de modelar de manera directa la densidad de electrones, se la modela de manera indirecta, al calcular la densidad de las especies ionizadas. Este procedimiento permite un mejor entendimiento de los distintos procesos físicos y químicos que suceden en las distintas regiones de la ionosfera. Para este trabajo se eligío modelar 7 especies ionizadas que abarcan las diferentes regiones de la ionosfera: NO+, N2 + y O2 + para modelar la región E y la parte baja de la región F, el O+ y el N+ para modelar la región F y el He+ y el H+ para modelar la región por encima de la capa F. La ecuación que regula el comportamiento de la densidad es la llamada “ecuación de continuidad”, en la que se tiene en cuenta varios procesos: i) la producción de iones por fotoionización y reacciones de intercambio, ii) la pérdida de iones debido a interacciones químicas con los electrones y con los elementos neutros de la atmósfera, iii) efectos de transporte por movimientos convectivos originados en la interacción entre el campo magnético terrestre, los campos eléctricos presentes en la ionosfera y la acción de los vientos neutros. Se elige un sistema coordenado asociado con el campo magnético de la Tierra lo que permite llevar el problema de 3 dimensiones a 2 dimensiones y presenta la ventaja de desacoplar los movimientos en las direcciones paralela y perpendicular a las líneas de campo magnético. Como las especies ionizadas interactúan entre si a través de reacciones químicas y de colisiones, las ecuaciones para cada especie están acopladas y es necesario resolver el sistema en forma simultánea. De este manera, el sistema a resolver queda conformado por ecuaciones diferenciales parciales en su forma conservativa. Se utiliza el Método de Volúmenes Finitos con un esquema de <i>upwind</i> para su resolución. El resultado final es un modelo que permite estimar el comportamiento que presenta la ionosfera a latitudes bajas y medias a través de la evolución temporal y espacial de las densidades para 7 especies ionizadas y para los electrones sin la necesidad de alimentarlas con mediciones. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03-27 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion Tesis de doctorado http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/26592 https://doi.org/10.35537/10915/26592 |
url |
http://sedici.unlp.edu.ar/handle/10915/26592 https://doi.org/10.35537/10915/26592 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/2.5/ar/ Creative Commons Attribution-ShareAlike 2.5 Argentina (CC BY-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/2.5/ar/ Creative Commons Attribution-ShareAlike 2.5 Argentina (CC BY-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063921901862912 |
score |
13.22299 |