Estimation of stresses in arterial tissue: from residual stresses to material parameters

Autores
Ares, Gonzalo D.; Blanco, Pablo J.; Urquiza, Santiago A.; Feijóo, Raúl A.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In the past decades a considerable amount of literature has been published addressing the study of the mechanical behavior of arterial walls. In these works, researchers have developed constitutive models and characterized the typical ranges for the values of material parameters of vascular tissues. Moreover, the existence of residual stresses in configurations free of loads was revealed, and its impact in the general stress state of the tissue was quantified. Currently, ex-vivo experiments such as inflation-extension tests and biaxial stress tests are extensively used for the estimation of the constitutive parameters in arterial wall probes. Also, destructive experiments involving radial cutting of specimens and the separation of arterial layers are used to identify layer-specific residual deformations (and stresses). For the latter scenario, material parameters are assumed to be known. In this context, a technique for the simultaneous characterization of residual deformations and material parameters in the arterial wall is proposed. This approach is based on data tipically obtained from inflation-extension tests, assuming that the material configuration and the radial displacement of the vessel is known for different load conditions given by fixed axial stretch and internal pressure values. The characterization problem is tackled through the minimization of a cost functional that measures the mechanical disequilibrium of the known material configuration and the discrepancy between the predicted and observed displacement of the outer vessel boundary. To illustrate the feasibility of the proposed methodology a manufactured-solution example is presented.
Publicado en: Mecánica Computacional vol. XXXV, no. 9.
Facultad de Ingeniería
Materia
Ingeniería
residual deformations
residual stresses
arterial tissue
material characterization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/94621

id SEDICI_c84d062537845bfb2bcd212a7db8c91e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/94621
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Estimation of stresses in arterial tissue: from residual stresses to material parametersAres, Gonzalo D.Blanco, Pablo J.Urquiza, Santiago A.Feijóo, Raúl A.Ingenieríaresidual deformationsresidual stressesarterial tissuematerial characterizationIn the past decades a considerable amount of literature has been published addressing the study of the mechanical behavior of arterial walls. In these works, researchers have developed constitutive models and characterized the typical ranges for the values of material parameters of vascular tissues. Moreover, the existence of residual stresses in configurations free of loads was revealed, and its impact in the general stress state of the tissue was quantified. Currently, ex-vivo experiments such as inflation-extension tests and biaxial stress tests are extensively used for the estimation of the constitutive parameters in arterial wall probes. Also, destructive experiments involving radial cutting of specimens and the separation of arterial layers are used to identify layer-specific residual deformations (and stresses). For the latter scenario, material parameters are assumed to be known. In this context, a technique for the simultaneous characterization of residual deformations and material parameters in the arterial wall is proposed. This approach is based on data tipically obtained from inflation-extension tests, assuming that the material configuration and the radial displacement of the vessel is known for different load conditions given by fixed axial stretch and internal pressure values. The characterization problem is tackled through the minimization of a cost functional that measures the mechanical disequilibrium of the known material configuration and the discrepancy between the predicted and observed displacement of the outer vessel boundary. To illustrate the feasibility of the proposed methodology a manufactured-solution example is presented.Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 9.Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf425http://sedici.unlp.edu.ar/handle/10915/94621enginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5272info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:46Zoai:sedici.unlp.edu.ar:10915/94621Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:46.488SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Estimation of stresses in arterial tissue: from residual stresses to material parameters
title Estimation of stresses in arterial tissue: from residual stresses to material parameters
spellingShingle Estimation of stresses in arterial tissue: from residual stresses to material parameters
Ares, Gonzalo D.
Ingeniería
residual deformations
residual stresses
arterial tissue
material characterization
title_short Estimation of stresses in arterial tissue: from residual stresses to material parameters
title_full Estimation of stresses in arterial tissue: from residual stresses to material parameters
title_fullStr Estimation of stresses in arterial tissue: from residual stresses to material parameters
title_full_unstemmed Estimation of stresses in arterial tissue: from residual stresses to material parameters
title_sort Estimation of stresses in arterial tissue: from residual stresses to material parameters
dc.creator.none.fl_str_mv Ares, Gonzalo D.
Blanco, Pablo J.
Urquiza, Santiago A.
Feijóo, Raúl A.
author Ares, Gonzalo D.
author_facet Ares, Gonzalo D.
Blanco, Pablo J.
Urquiza, Santiago A.
Feijóo, Raúl A.
author_role author
author2 Blanco, Pablo J.
Urquiza, Santiago A.
Feijóo, Raúl A.
author2_role author
author
author
dc.subject.none.fl_str_mv Ingeniería
residual deformations
residual stresses
arterial tissue
material characterization
topic Ingeniería
residual deformations
residual stresses
arterial tissue
material characterization
dc.description.none.fl_txt_mv In the past decades a considerable amount of literature has been published addressing the study of the mechanical behavior of arterial walls. In these works, researchers have developed constitutive models and characterized the typical ranges for the values of material parameters of vascular tissues. Moreover, the existence of residual stresses in configurations free of loads was revealed, and its impact in the general stress state of the tissue was quantified. Currently, ex-vivo experiments such as inflation-extension tests and biaxial stress tests are extensively used for the estimation of the constitutive parameters in arterial wall probes. Also, destructive experiments involving radial cutting of specimens and the separation of arterial layers are used to identify layer-specific residual deformations (and stresses). For the latter scenario, material parameters are assumed to be known. In this context, a technique for the simultaneous characterization of residual deformations and material parameters in the arterial wall is proposed. This approach is based on data tipically obtained from inflation-extension tests, assuming that the material configuration and the radial displacement of the vessel is known for different load conditions given by fixed axial stretch and internal pressure values. The characterization problem is tackled through the minimization of a cost functional that measures the mechanical disequilibrium of the known material configuration and the discrepancy between the predicted and observed displacement of the outer vessel boundary. To illustrate the feasibility of the proposed methodology a manufactured-solution example is presented.
Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 9.
Facultad de Ingeniería
description In the past decades a considerable amount of literature has been published addressing the study of the mechanical behavior of arterial walls. In these works, researchers have developed constitutive models and characterized the typical ranges for the values of material parameters of vascular tissues. Moreover, the existence of residual stresses in configurations free of loads was revealed, and its impact in the general stress state of the tissue was quantified. Currently, ex-vivo experiments such as inflation-extension tests and biaxial stress tests are extensively used for the estimation of the constitutive parameters in arterial wall probes. Also, destructive experiments involving radial cutting of specimens and the separation of arterial layers are used to identify layer-specific residual deformations (and stresses). For the latter scenario, material parameters are assumed to be known. In this context, a technique for the simultaneous characterization of residual deformations and material parameters in the arterial wall is proposed. This approach is based on data tipically obtained from inflation-extension tests, assuming that the material configuration and the radial displacement of the vessel is known for different load conditions given by fixed axial stretch and internal pressure values. The characterization problem is tackled through the minimization of a cost functional that measures the mechanical disequilibrium of the known material configuration and the discrepancy between the predicted and observed displacement of the outer vessel boundary. To illustrate the feasibility of the proposed methodology a manufactured-solution example is presented.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Resumen
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/94621
url http://sedici.unlp.edu.ar/handle/10915/94621
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5272
info:eu-repo/semantics/altIdentifier/issn/2591-3522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
425
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616071495024640
score 13.070432