Self-adaptation of parameters for MCPC in genetic algorithms
- Autores
- Esquivel, Susana Cecilia; Leiva, Héctor Ariel; Gallard, Raúl Hector
- Año de publicación
- 1998
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- As a new promising crossover method, multiple crossovers per couple (MCPC) deserves special attention in evolutionary computing field. Allowing multiple crossovers per couple on a selected pair of parents provided an extra benefit in processing time and similar quality of solutions when contrasted against the conventional single crossover per couple approach (SCPC). These results, were confirmed when optimising classic testing functions and harder (non-linear, non-separable) functions. Despite these benefits, due to a reinforcement of selective pressure, MCPC showed in some cases an undesirable premature convergence effect. In order to face this problem, the present paper attempts to control the number of crossovers, and offspring, allowed to the mating pair in a self-adaptive manner. Self-adaptation of parameters is a central feature of evolutionary strategies, another class of evolutionary algorithms, which simultaneously apply evolutionary principles on the search space of object variables and on strategy parameters. In other words, parameter values are also submitted to the evolutionary process. This approach can be also applied to genetic algorithms. In the case of MCPC, the number of crossovers allowed to a selected couple is a key parameter and consequently self-adaptation is achieved by adding to the chromosome structure "labels" describing the number of crossover allowed to each individual. Labels, which are bit strings, also undergo crossover and mutation and consequently evolve together with the individual. During the stages of the evolution process, it is expected that the algorithm will return the number of crossovers for which the current population exhibits a better behaviour. Descriptions of different self-adaptation methods used, experiments and some of the results obtained are shown.
Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Informática
Biology and genetics
Self-assessment
Selection process
genetic algorithms
self-adaptation
crossover
function optimization - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/24822
Ver los metadatos del registro completo
id |
SEDICI_c569ade9b472ef568687750b605f0186 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/24822 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Self-adaptation of parameters for MCPC in genetic algorithmsEsquivel, Susana CeciliaLeiva, Héctor ArielGallard, Raúl HectorCiencias InformáticasInformáticaBiology and geneticsSelf-assessmentSelection processgenetic algorithmsself-adaptationcrossoverfunction optimizationAs a new promising crossover method, multiple crossovers per couple (MCPC) deserves special attention in evolutionary computing field. Allowing multiple crossovers per couple on a selected pair of parents provided an extra benefit in processing time and similar quality of solutions when contrasted against the conventional single crossover per couple approach (SCPC). These results, were confirmed when optimising classic testing functions and harder (non-linear, non-separable) functions. Despite these benefits, due to a reinforcement of selective pressure, MCPC showed in some cases an undesirable premature convergence effect. In order to face this problem, the present paper attempts to control the number of crossovers, and offspring, allowed to the mating pair in a self-adaptive manner. Self-adaptation of parameters is a central feature of evolutionary strategies, another class of evolutionary algorithms, which simultaneously apply evolutionary principles on the search space of object variables and on strategy parameters. In other words, parameter values are also submitted to the evolutionary process. This approach can be also applied to genetic algorithms. In the case of MCPC, the number of crossovers allowed to a selected couple is a key parameter and consequently self-adaptation is achieved by adding to the chromosome structure "labels" describing the number of crossover allowed to each individual. Labels, which are bit strings, also undergo crossover and mutation and consequently evolve together with the individual. During the stages of the evolution process, it is expected that the algorithm will return the number of crossovers for which the current population exhibits a better behaviour. Descriptions of different self-adaptation methods used, experiments and some of the results obtained are shown.Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)1998-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24822enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:38Zoai:sedici.unlp.edu.ar:10915/24822Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:38.323SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Self-adaptation of parameters for MCPC in genetic algorithms |
title |
Self-adaptation of parameters for MCPC in genetic algorithms |
spellingShingle |
Self-adaptation of parameters for MCPC in genetic algorithms Esquivel, Susana Cecilia Ciencias Informáticas Informática Biology and genetics Self-assessment Selection process genetic algorithms self-adaptation crossover function optimization |
title_short |
Self-adaptation of parameters for MCPC in genetic algorithms |
title_full |
Self-adaptation of parameters for MCPC in genetic algorithms |
title_fullStr |
Self-adaptation of parameters for MCPC in genetic algorithms |
title_full_unstemmed |
Self-adaptation of parameters for MCPC in genetic algorithms |
title_sort |
Self-adaptation of parameters for MCPC in genetic algorithms |
dc.creator.none.fl_str_mv |
Esquivel, Susana Cecilia Leiva, Héctor Ariel Gallard, Raúl Hector |
author |
Esquivel, Susana Cecilia |
author_facet |
Esquivel, Susana Cecilia Leiva, Héctor Ariel Gallard, Raúl Hector |
author_role |
author |
author2 |
Leiva, Héctor Ariel Gallard, Raúl Hector |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Informática Biology and genetics Self-assessment Selection process genetic algorithms self-adaptation crossover function optimization |
topic |
Ciencias Informáticas Informática Biology and genetics Self-assessment Selection process genetic algorithms self-adaptation crossover function optimization |
dc.description.none.fl_txt_mv |
As a new promising crossover method, multiple crossovers per couple (MCPC) deserves special attention in evolutionary computing field. Allowing multiple crossovers per couple on a selected pair of parents provided an extra benefit in processing time and similar quality of solutions when contrasted against the conventional single crossover per couple approach (SCPC). These results, were confirmed when optimising classic testing functions and harder (non-linear, non-separable) functions. Despite these benefits, due to a reinforcement of selective pressure, MCPC showed in some cases an undesirable premature convergence effect. In order to face this problem, the present paper attempts to control the number of crossovers, and offspring, allowed to the mating pair in a self-adaptive manner. Self-adaptation of parameters is a central feature of evolutionary strategies, another class of evolutionary algorithms, which simultaneously apply evolutionary principles on the search space of object variables and on strategy parameters. In other words, parameter values are also submitted to the evolutionary process. This approach can be also applied to genetic algorithms. In the case of MCPC, the number of crossovers allowed to a selected couple is a key parameter and consequently self-adaptation is achieved by adding to the chromosome structure "labels" describing the number of crossover allowed to each individual. Labels, which are bit strings, also undergo crossover and mutation and consequently evolve together with the individual. During the stages of the evolution process, it is expected that the algorithm will return the number of crossovers for which the current population exhibits a better behaviour. Descriptions of different self-adaptation methods used, experiments and some of the results obtained are shown. Sistemas Inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
As a new promising crossover method, multiple crossovers per couple (MCPC) deserves special attention in evolutionary computing field. Allowing multiple crossovers per couple on a selected pair of parents provided an extra benefit in processing time and similar quality of solutions when contrasted against the conventional single crossover per couple approach (SCPC). These results, were confirmed when optimising classic testing functions and harder (non-linear, non-separable) functions. Despite these benefits, due to a reinforcement of selective pressure, MCPC showed in some cases an undesirable premature convergence effect. In order to face this problem, the present paper attempts to control the number of crossovers, and offspring, allowed to the mating pair in a self-adaptive manner. Self-adaptation of parameters is a central feature of evolutionary strategies, another class of evolutionary algorithms, which simultaneously apply evolutionary principles on the search space of object variables and on strategy parameters. In other words, parameter values are also submitted to the evolutionary process. This approach can be also applied to genetic algorithms. In the case of MCPC, the number of crossovers allowed to a selected couple is a key parameter and consequently self-adaptation is achieved by adding to the chromosome structure "labels" describing the number of crossover allowed to each individual. Labels, which are bit strings, also undergo crossover and mutation and consequently evolve together with the individual. During the stages of the evolution process, it is expected that the algorithm will return the number of crossovers for which the current population exhibits a better behaviour. Descriptions of different self-adaptation methods used, experiments and some of the results obtained are shown. |
publishDate |
1998 |
dc.date.none.fl_str_mv |
1998-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/24822 |
url |
http://sedici.unlp.edu.ar/handle/10915/24822 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063915326242816 |
score |
13.22299 |