Self-adaptation of parameters for MCPC in genetic algorithms

Autores
Esquivel, Susana Cecilia; Leiva, Héctor Ariel; Gallard, Raúl Hector
Año de publicación
1998
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
As a new promising crossover method, multiple crossovers per couple (MCPC) deserves special attention in evolutionary computing field. Allowing multiple crossovers per couple on a selected pair of parents provided an extra benefit in processing time and similar quality of solutions when contrasted against the conventional single crossover per couple approach (SCPC). These results, were confirmed when optimising classic testing functions and harder (non-linear, non-separable) functions. Despite these benefits, due to a reinforcement of selective pressure, MCPC showed in some cases an undesirable premature convergence effect. In order to face this problem, the present paper attempts to control the number of crossovers, and offspring, allowed to the mating pair in a self-adaptive manner. Self-adaptation of parameters is a central feature of evolutionary strategies, another class of evolutionary algorithms, which simultaneously apply evolutionary principles on the search space of object variables and on strategy parameters. In other words, parameter values are also submitted to the evolutionary process. This approach can be also applied to genetic algorithms. In the case of MCPC, the number of crossovers allowed to a selected couple is a key parameter and consequently self-adaptation is achieved by adding to the chromosome structure "labels" describing the number of crossover allowed to each individual. Labels, which are bit strings, also undergo crossover and mutation and consequently evolve together with the individual. During the stages of the evolution process, it is expected that the algorithm will return the number of crossovers for which the current population exhibits a better behaviour. Descriptions of different self-adaptation methods used, experiments and some of the results obtained are shown.
Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Informática
Biology and genetics
Self-assessment
Selection process
genetic algorithms
self-adaptation
crossover
function optimization
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/24822

id SEDICI_c569ade9b472ef568687750b605f0186
oai_identifier_str oai:sedici.unlp.edu.ar:10915/24822
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Self-adaptation of parameters for MCPC in genetic algorithmsEsquivel, Susana CeciliaLeiva, Héctor ArielGallard, Raúl HectorCiencias InformáticasInformáticaBiology and geneticsSelf-assessmentSelection processgenetic algorithmsself-adaptationcrossoverfunction optimizationAs a new promising crossover method, multiple crossovers per couple (MCPC) deserves special attention in evolutionary computing field. Allowing multiple crossovers per couple on a selected pair of parents provided an extra benefit in processing time and similar quality of solutions when contrasted against the conventional single crossover per couple approach (SCPC). These results, were confirmed when optimising classic testing functions and harder (non-linear, non-separable) functions. Despite these benefits, due to a reinforcement of selective pressure, MCPC showed in some cases an undesirable premature convergence effect. In order to face this problem, the present paper attempts to control the number of crossovers, and offspring, allowed to the mating pair in a self-adaptive manner. Self-adaptation of parameters is a central feature of evolutionary strategies, another class of evolutionary algorithms, which simultaneously apply evolutionary principles on the search space of object variables and on strategy parameters. In other words, parameter values are also submitted to the evolutionary process. This approach can be also applied to genetic algorithms. In the case of MCPC, the number of crossovers allowed to a selected couple is a key parameter and consequently self-adaptation is achieved by adding to the chromosome structure "labels" describing the number of crossover allowed to each individual. Labels, which are bit strings, also undergo crossover and mutation and consequently evolve together with the individual. During the stages of the evolution process, it is expected that the algorithm will return the number of crossovers for which the current population exhibits a better behaviour. Descriptions of different self-adaptation methods used, experiments and some of the results obtained are shown.Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)1998-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24822enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:48:38Zoai:sedici.unlp.edu.ar:10915/24822Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:48:38.323SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Self-adaptation of parameters for MCPC in genetic algorithms
title Self-adaptation of parameters for MCPC in genetic algorithms
spellingShingle Self-adaptation of parameters for MCPC in genetic algorithms
Esquivel, Susana Cecilia
Ciencias Informáticas
Informática
Biology and genetics
Self-assessment
Selection process
genetic algorithms
self-adaptation
crossover
function optimization
title_short Self-adaptation of parameters for MCPC in genetic algorithms
title_full Self-adaptation of parameters for MCPC in genetic algorithms
title_fullStr Self-adaptation of parameters for MCPC in genetic algorithms
title_full_unstemmed Self-adaptation of parameters for MCPC in genetic algorithms
title_sort Self-adaptation of parameters for MCPC in genetic algorithms
dc.creator.none.fl_str_mv Esquivel, Susana Cecilia
Leiva, Héctor Ariel
Gallard, Raúl Hector
author Esquivel, Susana Cecilia
author_facet Esquivel, Susana Cecilia
Leiva, Héctor Ariel
Gallard, Raúl Hector
author_role author
author2 Leiva, Héctor Ariel
Gallard, Raúl Hector
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Informática
Biology and genetics
Self-assessment
Selection process
genetic algorithms
self-adaptation
crossover
function optimization
topic Ciencias Informáticas
Informática
Biology and genetics
Self-assessment
Selection process
genetic algorithms
self-adaptation
crossover
function optimization
dc.description.none.fl_txt_mv As a new promising crossover method, multiple crossovers per couple (MCPC) deserves special attention in evolutionary computing field. Allowing multiple crossovers per couple on a selected pair of parents provided an extra benefit in processing time and similar quality of solutions when contrasted against the conventional single crossover per couple approach (SCPC). These results, were confirmed when optimising classic testing functions and harder (non-linear, non-separable) functions. Despite these benefits, due to a reinforcement of selective pressure, MCPC showed in some cases an undesirable premature convergence effect. In order to face this problem, the present paper attempts to control the number of crossovers, and offspring, allowed to the mating pair in a self-adaptive manner. Self-adaptation of parameters is a central feature of evolutionary strategies, another class of evolutionary algorithms, which simultaneously apply evolutionary principles on the search space of object variables and on strategy parameters. In other words, parameter values are also submitted to the evolutionary process. This approach can be also applied to genetic algorithms. In the case of MCPC, the number of crossovers allowed to a selected couple is a key parameter and consequently self-adaptation is achieved by adding to the chromosome structure "labels" describing the number of crossover allowed to each individual. Labels, which are bit strings, also undergo crossover and mutation and consequently evolve together with the individual. During the stages of the evolution process, it is expected that the algorithm will return the number of crossovers for which the current population exhibits a better behaviour. Descriptions of different self-adaptation methods used, experiments and some of the results obtained are shown.
Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI)
description As a new promising crossover method, multiple crossovers per couple (MCPC) deserves special attention in evolutionary computing field. Allowing multiple crossovers per couple on a selected pair of parents provided an extra benefit in processing time and similar quality of solutions when contrasted against the conventional single crossover per couple approach (SCPC). These results, were confirmed when optimising classic testing functions and harder (non-linear, non-separable) functions. Despite these benefits, due to a reinforcement of selective pressure, MCPC showed in some cases an undesirable premature convergence effect. In order to face this problem, the present paper attempts to control the number of crossovers, and offspring, allowed to the mating pair in a self-adaptive manner. Self-adaptation of parameters is a central feature of evolutionary strategies, another class of evolutionary algorithms, which simultaneously apply evolutionary principles on the search space of object variables and on strategy parameters. In other words, parameter values are also submitted to the evolutionary process. This approach can be also applied to genetic algorithms. In the case of MCPC, the number of crossovers allowed to a selected couple is a key parameter and consequently self-adaptation is achieved by adding to the chromosome structure "labels" describing the number of crossover allowed to each individual. Labels, which are bit strings, also undergo crossover and mutation and consequently evolve together with the individual. During the stages of the evolution process, it is expected that the algorithm will return the number of crossovers for which the current population exhibits a better behaviour. Descriptions of different self-adaptation methods used, experiments and some of the results obtained are shown.
publishDate 1998
dc.date.none.fl_str_mv 1998-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/24822
url http://sedici.unlp.edu.ar/handle/10915/24822
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063915326242816
score 13.22299