Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methods
- Autores
- Idiart, Martín Ignacio
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The elastoplastic response of polycrystalline metals and minerals above their brittle- ductile transition temperature is idealized here as rigid-perfectly plastic. Bounds on the overall plastic strength of polycrystalline solids with prescribed microstructural statistics and single-crystal plastic strength are computed by means of a linear-comparison homogenization method recently developed by Idiart & Ponte Castañeda (Idiart & Ponte Castañeda 2007 Proc. R. Soc. A 463, 907-924 (doi:10.1098/rspa.2006.1797)). Hashin- Shtrikman and self-consistent results are reported for cubic and hexagonal polycrystals with varying degrees of crystal anisotropy. Improvements over earlier linear-comparison bounds are found to be modest for high-symmetry materials but become appreciable for low-symmetry materials. The largest improvement is observed in self-consistent results for low-symmetry hexagonal polycrystals, exceeding 15 per cent in some cases. In addition to providing the sharpest bounds available to date, these results serve to evaluate the performance of the aforementioned linear-comparison method in the context of realistic material systems.
Facultad de Ingeniería - Materia
-
Física
Homogenization
Plasticity
Polycrystals - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/84268
Ver los metadatos del registro completo
id |
SEDICI_c49b6059d669c6b25ab94121870ee9af |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/84268 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methodsIdiart, Martín IgnacioFísicaHomogenizationPlasticityPolycrystalsThe elastoplastic response of polycrystalline metals and minerals above their brittle- ductile transition temperature is idealized here as rigid-perfectly plastic. Bounds on the overall plastic strength of polycrystalline solids with prescribed microstructural statistics and single-crystal plastic strength are computed by means of a linear-comparison homogenization method recently developed by Idiart & Ponte Castañeda (Idiart & Ponte Castañeda 2007 Proc. R. Soc. A 463, 907-924 (doi:10.1098/rspa.2006.1797)). Hashin- Shtrikman and self-consistent results are reported for cubic and hexagonal polycrystals with varying degrees of crystal anisotropy. Improvements over earlier linear-comparison bounds are found to be modest for high-symmetry materials but become appreciable for low-symmetry materials. The largest improvement is observed in self-consistent results for low-symmetry hexagonal polycrystals, exceeding 15 per cent in some cases. In addition to providing the sharpest bounds available to date, these results serve to evaluate the performance of the aforementioned linear-comparison method in the context of realistic material systems.Facultad de Ingeniería2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1136-1153http://sedici.unlp.edu.ar/handle/10915/84268enginfo:eu-repo/semantics/altIdentifier/issn/1364-5021info:eu-repo/semantics/altIdentifier/doi/10.1098/rspa.2011.0509info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:16:05Zoai:sedici.unlp.edu.ar:10915/84268Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:16:05.429SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methods |
title |
Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methods |
spellingShingle |
Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methods Idiart, Martín Ignacio Física Homogenization Plasticity Polycrystals |
title_short |
Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methods |
title_full |
Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methods |
title_fullStr |
Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methods |
title_full_unstemmed |
Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methods |
title_sort |
Bounding the plastic strength of polycrystalline solids by linear-comparison homogenization methods |
dc.creator.none.fl_str_mv |
Idiart, Martín Ignacio |
author |
Idiart, Martín Ignacio |
author_facet |
Idiart, Martín Ignacio |
author_role |
author |
dc.subject.none.fl_str_mv |
Física Homogenization Plasticity Polycrystals |
topic |
Física Homogenization Plasticity Polycrystals |
dc.description.none.fl_txt_mv |
The elastoplastic response of polycrystalline metals and minerals above their brittle- ductile transition temperature is idealized here as rigid-perfectly plastic. Bounds on the overall plastic strength of polycrystalline solids with prescribed microstructural statistics and single-crystal plastic strength are computed by means of a linear-comparison homogenization method recently developed by Idiart & Ponte Castañeda (Idiart & Ponte Castañeda 2007 Proc. R. Soc. A 463, 907-924 (doi:10.1098/rspa.2006.1797)). Hashin- Shtrikman and self-consistent results are reported for cubic and hexagonal polycrystals with varying degrees of crystal anisotropy. Improvements over earlier linear-comparison bounds are found to be modest for high-symmetry materials but become appreciable for low-symmetry materials. The largest improvement is observed in self-consistent results for low-symmetry hexagonal polycrystals, exceeding 15 per cent in some cases. In addition to providing the sharpest bounds available to date, these results serve to evaluate the performance of the aforementioned linear-comparison method in the context of realistic material systems. Facultad de Ingeniería |
description |
The elastoplastic response of polycrystalline metals and minerals above their brittle- ductile transition temperature is idealized here as rigid-perfectly plastic. Bounds on the overall plastic strength of polycrystalline solids with prescribed microstructural statistics and single-crystal plastic strength are computed by means of a linear-comparison homogenization method recently developed by Idiart & Ponte Castañeda (Idiart & Ponte Castañeda 2007 Proc. R. Soc. A 463, 907-924 (doi:10.1098/rspa.2006.1797)). Hashin- Shtrikman and self-consistent results are reported for cubic and hexagonal polycrystals with varying degrees of crystal anisotropy. Improvements over earlier linear-comparison bounds are found to be modest for high-symmetry materials but become appreciable for low-symmetry materials. The largest improvement is observed in self-consistent results for low-symmetry hexagonal polycrystals, exceeding 15 per cent in some cases. In addition to providing the sharpest bounds available to date, these results serve to evaluate the performance of the aforementioned linear-comparison method in the context of realistic material systems. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/84268 |
url |
http://sedici.unlp.edu.ar/handle/10915/84268 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1364-5021 info:eu-repo/semantics/altIdentifier/doi/10.1098/rspa.2011.0509 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1136-1153 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616033124483072 |
score |
13.070432 |