The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable

Autores
Di Rocco, Héctor Oscar; Cruzado, Alicia
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Assuming that V (x) ≈ (1 − µ) G₁(x) + µL₁(x) is a very good approximation of the Voigt function, in this work we analytically find µ from mathematical properties of V (x). G₁(x) and L₁(x) represent a Gaussian and a Lorentzian function, respectively, with the same height and HWHM as V (x), the Voigt function, x being the distance from the function center. In this paper we extend the analysis that we have done in a previous paper, where µ is only a function of a; a being the ratio of the Lorentz width to the Gaussian width. Using one of the differential equation that V (x) satisfies, in the present paper we obtain µ as a function, not only of a, but also of x. Kielkopf first proposed µ(a, x) based on numerical arguments. We find that the Voigt function calculated with the expression µ(a, x) we have obtained in this paper, deviates from the exact value less than µ(a) does, specially for high |x| values.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
Materia
Astronomía
Voigt function
Gaussian function
Lorentzian function
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/128257

id SEDICI_c173ee9cffd0c33cbc61e26139257928
oai_identifier_str oai:sedici.unlp.edu.ar:10915/128257
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent VariableDi Rocco, Héctor OscarCruzado, AliciaAstronomíaVoigt functionGaussian functionLorentzian functionAssuming that V (x) ≈ (1 − µ) G₁(x) + µL₁(x) is a very good approximation of the Voigt function, in this work we analytically find µ from mathematical properties of V (x). G₁(x) and L₁(x) represent a Gaussian and a Lorentzian function, respectively, with the same height and HWHM as V (x), the Voigt function, x being the distance from the function center. In this paper we extend the analysis that we have done in a previous paper, where µ is only a function of a; a being the ratio of the Lorentz width to the Gaussian width. Using one of the differential equation that V (x) satisfies, in the present paper we obtain µ as a function, not only of a, but also of x. Kielkopf first proposed µ(a, x) based on numerical arguments. We find that the Voigt function calculated with the expression µ(a, x) we have obtained in this paper, deviates from the exact value less than µ(a) does, specially for high |x| values.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf670-673http://sedici.unlp.edu.ar/handle/10915/128257enginfo:eu-repo/semantics/altIdentifier/issn/0587-4246info:eu-repo/semantics/altIdentifier/issn/1898-794Xinfo:eu-repo/semantics/altIdentifier/doi/10.12693/aphyspola.122.670info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:22:49Zoai:sedici.unlp.edu.ar:10915/128257Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:22:50.218SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable
title The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable
spellingShingle The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable
Di Rocco, Héctor Oscar
Astronomía
Voigt function
Gaussian function
Lorentzian function
title_short The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable
title_full The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable
title_fullStr The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable
title_full_unstemmed The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable
title_sort The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable
dc.creator.none.fl_str_mv Di Rocco, Héctor Oscar
Cruzado, Alicia
author Di Rocco, Héctor Oscar
author_facet Di Rocco, Héctor Oscar
Cruzado, Alicia
author_role author
author2 Cruzado, Alicia
author2_role author
dc.subject.none.fl_str_mv Astronomía
Voigt function
Gaussian function
Lorentzian function
topic Astronomía
Voigt function
Gaussian function
Lorentzian function
dc.description.none.fl_txt_mv Assuming that V (x) ≈ (1 − µ) G₁(x) + µL₁(x) is a very good approximation of the Voigt function, in this work we analytically find µ from mathematical properties of V (x). G₁(x) and L₁(x) represent a Gaussian and a Lorentzian function, respectively, with the same height and HWHM as V (x), the Voigt function, x being the distance from the function center. In this paper we extend the analysis that we have done in a previous paper, where µ is only a function of a; a being the ratio of the Lorentz width to the Gaussian width. Using one of the differential equation that V (x) satisfies, in the present paper we obtain µ as a function, not only of a, but also of x. Kielkopf first proposed µ(a, x) based on numerical arguments. We find that the Voigt function calculated with the expression µ(a, x) we have obtained in this paper, deviates from the exact value less than µ(a) does, specially for high |x| values.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
description Assuming that V (x) ≈ (1 − µ) G₁(x) + µL₁(x) is a very good approximation of the Voigt function, in this work we analytically find µ from mathematical properties of V (x). G₁(x) and L₁(x) represent a Gaussian and a Lorentzian function, respectively, with the same height and HWHM as V (x), the Voigt function, x being the distance from the function center. In this paper we extend the analysis that we have done in a previous paper, where µ is only a function of a; a being the ratio of the Lorentz width to the Gaussian width. Using one of the differential equation that V (x) satisfies, in the present paper we obtain µ as a function, not only of a, but also of x. Kielkopf first proposed µ(a, x) based on numerical arguments. We find that the Voigt function calculated with the expression µ(a, x) we have obtained in this paper, deviates from the exact value less than µ(a) does, specially for high |x| values.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/128257
url http://sedici.unlp.edu.ar/handle/10915/128257
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0587-4246
info:eu-repo/semantics/altIdentifier/issn/1898-794X
info:eu-repo/semantics/altIdentifier/doi/10.12693/aphyspola.122.670
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
670-673
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064284112519168
score 13.22299