The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable
- Autores
- Di Rocco, Héctor Oscar; Cruzado, Alicia
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Assuming that V (x) ≈ (1 − µ) G₁(x) + µL₁(x) is a very good approximation of the Voigt function, in this work we analytically find µ from mathematical properties of V (x). G₁(x) and L₁(x) represent a Gaussian and a Lorentzian function, respectively, with the same height and HWHM as V (x), the Voigt function, x being the distance from the function center. In this paper we extend the analysis that we have done in a previous paper, where µ is only a function of a; a being the ratio of the Lorentz width to the Gaussian width. Using one of the differential equation that V (x) satisfies, in the present paper we obtain µ as a function, not only of a, but also of x. Kielkopf first proposed µ(a, x) based on numerical arguments. We find that the Voigt function calculated with the expression µ(a, x) we have obtained in this paper, deviates from the exact value less than µ(a) does, specially for high |x| values.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata - Materia
-
Astronomía
Voigt function
Gaussian function
Lorentzian function - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/128257
Ver los metadatos del registro completo
id |
SEDICI_c173ee9cffd0c33cbc61e26139257928 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/128257 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent VariableDi Rocco, Héctor OscarCruzado, AliciaAstronomíaVoigt functionGaussian functionLorentzian functionAssuming that V (x) ≈ (1 − µ) G₁(x) + µL₁(x) is a very good approximation of the Voigt function, in this work we analytically find µ from mathematical properties of V (x). G₁(x) and L₁(x) represent a Gaussian and a Lorentzian function, respectively, with the same height and HWHM as V (x), the Voigt function, x being the distance from the function center. In this paper we extend the analysis that we have done in a previous paper, where µ is only a function of a; a being the ratio of the Lorentz width to the Gaussian width. Using one of the differential equation that V (x) satisfies, in the present paper we obtain µ as a function, not only of a, but also of x. Kielkopf first proposed µ(a, x) based on numerical arguments. We find that the Voigt function calculated with the expression µ(a, x) we have obtained in this paper, deviates from the exact value less than µ(a) does, specially for high |x| values.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf670-673http://sedici.unlp.edu.ar/handle/10915/128257enginfo:eu-repo/semantics/altIdentifier/issn/0587-4246info:eu-repo/semantics/altIdentifier/issn/1898-794Xinfo:eu-repo/semantics/altIdentifier/doi/10.12693/aphyspola.122.670info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:22:49Zoai:sedici.unlp.edu.ar:10915/128257Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:22:50.218SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable |
title |
The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable |
spellingShingle |
The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable Di Rocco, Héctor Oscar Astronomía Voigt function Gaussian function Lorentzian function |
title_short |
The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable |
title_full |
The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable |
title_fullStr |
The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable |
title_full_unstemmed |
The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable |
title_sort |
The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable |
dc.creator.none.fl_str_mv |
Di Rocco, Héctor Oscar Cruzado, Alicia |
author |
Di Rocco, Héctor Oscar |
author_facet |
Di Rocco, Héctor Oscar Cruzado, Alicia |
author_role |
author |
author2 |
Cruzado, Alicia |
author2_role |
author |
dc.subject.none.fl_str_mv |
Astronomía Voigt function Gaussian function Lorentzian function |
topic |
Astronomía Voigt function Gaussian function Lorentzian function |
dc.description.none.fl_txt_mv |
Assuming that V (x) ≈ (1 − µ) G₁(x) + µL₁(x) is a very good approximation of the Voigt function, in this work we analytically find µ from mathematical properties of V (x). G₁(x) and L₁(x) represent a Gaussian and a Lorentzian function, respectively, with the same height and HWHM as V (x), the Voigt function, x being the distance from the function center. In this paper we extend the analysis that we have done in a previous paper, where µ is only a function of a; a being the ratio of the Lorentz width to the Gaussian width. Using one of the differential equation that V (x) satisfies, in the present paper we obtain µ as a function, not only of a, but also of x. Kielkopf first proposed µ(a, x) based on numerical arguments. We find that the Voigt function calculated with the expression µ(a, x) we have obtained in this paper, deviates from the exact value less than µ(a) does, specially for high |x| values. Facultad de Ciencias Astronómicas y Geofísicas Instituto de Astrofísica de La Plata |
description |
Assuming that V (x) ≈ (1 − µ) G₁(x) + µL₁(x) is a very good approximation of the Voigt function, in this work we analytically find µ from mathematical properties of V (x). G₁(x) and L₁(x) represent a Gaussian and a Lorentzian function, respectively, with the same height and HWHM as V (x), the Voigt function, x being the distance from the function center. In this paper we extend the analysis that we have done in a previous paper, where µ is only a function of a; a being the ratio of the Lorentz width to the Gaussian width. Using one of the differential equation that V (x) satisfies, in the present paper we obtain µ as a function, not only of a, but also of x. Kielkopf first proposed µ(a, x) based on numerical arguments. We find that the Voigt function calculated with the expression µ(a, x) we have obtained in this paper, deviates from the exact value less than µ(a) does, specially for high |x| values. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/128257 |
url |
http://sedici.unlp.edu.ar/handle/10915/128257 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0587-4246 info:eu-repo/semantics/altIdentifier/issn/1898-794X info:eu-repo/semantics/altIdentifier/doi/10.12693/aphyspola.122.670 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 670-673 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064284112519168 |
score |
13.22299 |