<i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄

Autores
Melo Quintero, Jhon Jaither; Rodríguez Torres, Claudia Elena; Errico, Leonardo Antonio
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we present an ab initio study of structural, electronic, magnetic and hyperfine properties of pristine Zn-ferrite (ZnFe₂O₄, ZFO). Density Functional Theory calculations were performed using the Full-Potential Linearized Augmented Plane Waves (FPLAPW) method in the framework of the Generalized Gradient (GGA) and the GGA+U approximations. In order to discuss the magnetic ordering and the electronic structure of the system we considered different spin arrangements. We found that ZFO presents an energy landscape characterized by a large number of metastable states separated by an energy barrier of about KBTF, being KB the Boltzmann constant and TF the freezing temperature, indicating that ZFO can be described as an spin-glass system at low temperature (<10.5 K). Our calculations also support the picture that below 10.5 K small ferromagnetic spin-clusters (short-range interactions) surrounded by similar spin-clusters with opposite spin orientations (long-range interactions) coexist. Finally, our calculations predict a band gap of normal ZFO of 2.2 eV and successfully describe the hyperfine properties (isomer shift, magnetic hyperfine field and electric field gradient tensor) at the Fe sites that are seen by Mossbauer Spectroscopy (MS) at 4.2 and 300 K. This comparison enables us to characterize the local spin structure around Fe atoms and to explain the origin of the two hyperfine interactions experimentally observed, giving support to the coexistence of short- and a long-range order below 10.5 K.
Facultad de Ciencias Exactas
Instituto de Física La Plata
Materia
Ciencias Exactas
ZFO
Magnetic behavior
Electronic structure
Spin configuration
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/125218

id SEDICI_bb07017a34e6b6253f4d02151c0cb84f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/125218
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling <i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄Melo Quintero, Jhon JaitherRodríguez Torres, Claudia ElenaErrico, Leonardo AntonioCiencias ExactasZFOMagnetic behaviorElectronic structureSpin configurationIn this work we present an ab initio study of structural, electronic, magnetic and hyperfine properties of pristine Zn-ferrite (ZnFe₂O₄, ZFO). Density Functional Theory calculations were performed using the Full-Potential Linearized Augmented Plane Waves (FPLAPW) method in the framework of the Generalized Gradient (GGA) and the GGA+U approximations. In order to discuss the magnetic ordering and the electronic structure of the system we considered different spin arrangements. We found that ZFO presents an energy landscape characterized by a large number of metastable states separated by an energy barrier of about K<sub>B</sub>T<sub>F</sub>, being K<sub>B</sub> the Boltzmann constant and T<sub>F</sub> the freezing temperature, indicating that ZFO can be described as an spin-glass system at low temperature (<10.5 K). Our calculations also support the picture that below 10.5 K small ferromagnetic spin-clusters (short-range interactions) surrounded by similar spin-clusters with opposite spin orientations (long-range interactions) coexist. Finally, our calculations predict a band gap of normal ZFO of 2.2 eV and successfully describe the hyperfine properties (isomer shift, magnetic hyperfine field and electric field gradient tensor) at the Fe sites that are seen by Mossbauer Spectroscopy (MS) at 4.2 and 300 K. This comparison enables us to characterize the local spin structure around Fe atoms and to explain the origin of the two hyperfine interactions experimentally observed, giving support to the coexistence of short- and a long-range order below 10.5 K.Facultad de Ciencias ExactasInstituto de Física La Plata2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf746-755http://sedici.unlp.edu.ar/handle/10915/125218enginfo:eu-repo/semantics/altIdentifier/issn/0925-8388info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2018.01.217info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:01:53Zoai:sedici.unlp.edu.ar:10915/125218Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:01:53.758SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv <i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄
title <i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄
spellingShingle <i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄
Melo Quintero, Jhon Jaither
Ciencias Exactas
ZFO
Magnetic behavior
Electronic structure
Spin configuration
title_short <i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄
title_full <i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄
title_fullStr <i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄
title_full_unstemmed <i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄
title_sort <i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄
dc.creator.none.fl_str_mv Melo Quintero, Jhon Jaither
Rodríguez Torres, Claudia Elena
Errico, Leonardo Antonio
author Melo Quintero, Jhon Jaither
author_facet Melo Quintero, Jhon Jaither
Rodríguez Torres, Claudia Elena
Errico, Leonardo Antonio
author_role author
author2 Rodríguez Torres, Claudia Elena
Errico, Leonardo Antonio
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Exactas
ZFO
Magnetic behavior
Electronic structure
Spin configuration
topic Ciencias Exactas
ZFO
Magnetic behavior
Electronic structure
Spin configuration
dc.description.none.fl_txt_mv In this work we present an ab initio study of structural, electronic, magnetic and hyperfine properties of pristine Zn-ferrite (ZnFe₂O₄, ZFO). Density Functional Theory calculations were performed using the Full-Potential Linearized Augmented Plane Waves (FPLAPW) method in the framework of the Generalized Gradient (GGA) and the GGA+U approximations. In order to discuss the magnetic ordering and the electronic structure of the system we considered different spin arrangements. We found that ZFO presents an energy landscape characterized by a large number of metastable states separated by an energy barrier of about K<sub>B</sub>T<sub>F</sub>, being K<sub>B</sub> the Boltzmann constant and T<sub>F</sub> the freezing temperature, indicating that ZFO can be described as an spin-glass system at low temperature (<10.5 K). Our calculations also support the picture that below 10.5 K small ferromagnetic spin-clusters (short-range interactions) surrounded by similar spin-clusters with opposite spin orientations (long-range interactions) coexist. Finally, our calculations predict a band gap of normal ZFO of 2.2 eV and successfully describe the hyperfine properties (isomer shift, magnetic hyperfine field and electric field gradient tensor) at the Fe sites that are seen by Mossbauer Spectroscopy (MS) at 4.2 and 300 K. This comparison enables us to characterize the local spin structure around Fe atoms and to explain the origin of the two hyperfine interactions experimentally observed, giving support to the coexistence of short- and a long-range order below 10.5 K.
Facultad de Ciencias Exactas
Instituto de Física La Plata
description In this work we present an ab initio study of structural, electronic, magnetic and hyperfine properties of pristine Zn-ferrite (ZnFe₂O₄, ZFO). Density Functional Theory calculations were performed using the Full-Potential Linearized Augmented Plane Waves (FPLAPW) method in the framework of the Generalized Gradient (GGA) and the GGA+U approximations. In order to discuss the magnetic ordering and the electronic structure of the system we considered different spin arrangements. We found that ZFO presents an energy landscape characterized by a large number of metastable states separated by an energy barrier of about K<sub>B</sub>T<sub>F</sub>, being K<sub>B</sub> the Boltzmann constant and T<sub>F</sub> the freezing temperature, indicating that ZFO can be described as an spin-glass system at low temperature (<10.5 K). Our calculations also support the picture that below 10.5 K small ferromagnetic spin-clusters (short-range interactions) surrounded by similar spin-clusters with opposite spin orientations (long-range interactions) coexist. Finally, our calculations predict a band gap of normal ZFO of 2.2 eV and successfully describe the hyperfine properties (isomer shift, magnetic hyperfine field and electric field gradient tensor) at the Fe sites that are seen by Mossbauer Spectroscopy (MS) at 4.2 and 300 K. This comparison enables us to characterize the local spin structure around Fe atoms and to explain the origin of the two hyperfine interactions experimentally observed, giving support to the coexistence of short- and a long-range order below 10.5 K.
publishDate 2018
dc.date.none.fl_str_mv 2018-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/125218
url http://sedici.unlp.edu.ar/handle/10915/125218
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0925-8388
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2018.01.217
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
746-755
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260516428316672
score 13.13397