<i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄
- Autores
- Melo Quintero, Jhon Jaither; Rodríguez Torres, Claudia Elena; Errico, Leonardo Antonio
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we present an ab initio study of structural, electronic, magnetic and hyperfine properties of pristine Zn-ferrite (ZnFe₂O₄, ZFO). Density Functional Theory calculations were performed using the Full-Potential Linearized Augmented Plane Waves (FPLAPW) method in the framework of the Generalized Gradient (GGA) and the GGA+U approximations. In order to discuss the magnetic ordering and the electronic structure of the system we considered different spin arrangements. We found that ZFO presents an energy landscape characterized by a large number of metastable states separated by an energy barrier of about KBTF, being KB the Boltzmann constant and TF the freezing temperature, indicating that ZFO can be described as an spin-glass system at low temperature (<10.5 K). Our calculations also support the picture that below 10.5 K small ferromagnetic spin-clusters (short-range interactions) surrounded by similar spin-clusters with opposite spin orientations (long-range interactions) coexist. Finally, our calculations predict a band gap of normal ZFO of 2.2 eV and successfully describe the hyperfine properties (isomer shift, magnetic hyperfine field and electric field gradient tensor) at the Fe sites that are seen by Mossbauer Spectroscopy (MS) at 4.2 and 300 K. This comparison enables us to characterize the local spin structure around Fe atoms and to explain the origin of the two hyperfine interactions experimentally observed, giving support to the coexistence of short- and a long-range order below 10.5 K.
Facultad de Ciencias Exactas
Instituto de Física La Plata - Materia
-
Ciencias Exactas
ZFO
Magnetic behavior
Electronic structure
Spin configuration - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/125218
Ver los metadatos del registro completo
id |
SEDICI_bb07017a34e6b6253f4d02151c0cb84f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/125218 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
<i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄Melo Quintero, Jhon JaitherRodríguez Torres, Claudia ElenaErrico, Leonardo AntonioCiencias ExactasZFOMagnetic behaviorElectronic structureSpin configurationIn this work we present an ab initio study of structural, electronic, magnetic and hyperfine properties of pristine Zn-ferrite (ZnFe₂O₄, ZFO). Density Functional Theory calculations were performed using the Full-Potential Linearized Augmented Plane Waves (FPLAPW) method in the framework of the Generalized Gradient (GGA) and the GGA+U approximations. In order to discuss the magnetic ordering and the electronic structure of the system we considered different spin arrangements. We found that ZFO presents an energy landscape characterized by a large number of metastable states separated by an energy barrier of about K<sub>B</sub>T<sub>F</sub>, being K<sub>B</sub> the Boltzmann constant and T<sub>F</sub> the freezing temperature, indicating that ZFO can be described as an spin-glass system at low temperature (<10.5 K). Our calculations also support the picture that below 10.5 K small ferromagnetic spin-clusters (short-range interactions) surrounded by similar spin-clusters with opposite spin orientations (long-range interactions) coexist. Finally, our calculations predict a band gap of normal ZFO of 2.2 eV and successfully describe the hyperfine properties (isomer shift, magnetic hyperfine field and electric field gradient tensor) at the Fe sites that are seen by Mossbauer Spectroscopy (MS) at 4.2 and 300 K. This comparison enables us to characterize the local spin structure around Fe atoms and to explain the origin of the two hyperfine interactions experimentally observed, giving support to the coexistence of short- and a long-range order below 10.5 K.Facultad de Ciencias ExactasInstituto de Física La Plata2018-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf746-755http://sedici.unlp.edu.ar/handle/10915/125218enginfo:eu-repo/semantics/altIdentifier/issn/0925-8388info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2018.01.217info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:01:53Zoai:sedici.unlp.edu.ar:10915/125218Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:01:53.758SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
<i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄ |
title |
<i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄ |
spellingShingle |
<i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄ Melo Quintero, Jhon Jaither Ciencias Exactas ZFO Magnetic behavior Electronic structure Spin configuration |
title_short |
<i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄ |
title_full |
<i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄ |
title_fullStr |
<i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄ |
title_full_unstemmed |
<i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄ |
title_sort |
<i>Ab initio</i> calculation of structural, electronic and magnetic properties and hyperfine parameters at the Fe sites of pristine ZnFe₂O₄ |
dc.creator.none.fl_str_mv |
Melo Quintero, Jhon Jaither Rodríguez Torres, Claudia Elena Errico, Leonardo Antonio |
author |
Melo Quintero, Jhon Jaither |
author_facet |
Melo Quintero, Jhon Jaither Rodríguez Torres, Claudia Elena Errico, Leonardo Antonio |
author_role |
author |
author2 |
Rodríguez Torres, Claudia Elena Errico, Leonardo Antonio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas ZFO Magnetic behavior Electronic structure Spin configuration |
topic |
Ciencias Exactas ZFO Magnetic behavior Electronic structure Spin configuration |
dc.description.none.fl_txt_mv |
In this work we present an ab initio study of structural, electronic, magnetic and hyperfine properties of pristine Zn-ferrite (ZnFe₂O₄, ZFO). Density Functional Theory calculations were performed using the Full-Potential Linearized Augmented Plane Waves (FPLAPW) method in the framework of the Generalized Gradient (GGA) and the GGA+U approximations. In order to discuss the magnetic ordering and the electronic structure of the system we considered different spin arrangements. We found that ZFO presents an energy landscape characterized by a large number of metastable states separated by an energy barrier of about K<sub>B</sub>T<sub>F</sub>, being K<sub>B</sub> the Boltzmann constant and T<sub>F</sub> the freezing temperature, indicating that ZFO can be described as an spin-glass system at low temperature (<10.5 K). Our calculations also support the picture that below 10.5 K small ferromagnetic spin-clusters (short-range interactions) surrounded by similar spin-clusters with opposite spin orientations (long-range interactions) coexist. Finally, our calculations predict a band gap of normal ZFO of 2.2 eV and successfully describe the hyperfine properties (isomer shift, magnetic hyperfine field and electric field gradient tensor) at the Fe sites that are seen by Mossbauer Spectroscopy (MS) at 4.2 and 300 K. This comparison enables us to characterize the local spin structure around Fe atoms and to explain the origin of the two hyperfine interactions experimentally observed, giving support to the coexistence of short- and a long-range order below 10.5 K. Facultad de Ciencias Exactas Instituto de Física La Plata |
description |
In this work we present an ab initio study of structural, electronic, magnetic and hyperfine properties of pristine Zn-ferrite (ZnFe₂O₄, ZFO). Density Functional Theory calculations were performed using the Full-Potential Linearized Augmented Plane Waves (FPLAPW) method in the framework of the Generalized Gradient (GGA) and the GGA+U approximations. In order to discuss the magnetic ordering and the electronic structure of the system we considered different spin arrangements. We found that ZFO presents an energy landscape characterized by a large number of metastable states separated by an energy barrier of about K<sub>B</sub>T<sub>F</sub>, being K<sub>B</sub> the Boltzmann constant and T<sub>F</sub> the freezing temperature, indicating that ZFO can be described as an spin-glass system at low temperature (<10.5 K). Our calculations also support the picture that below 10.5 K small ferromagnetic spin-clusters (short-range interactions) surrounded by similar spin-clusters with opposite spin orientations (long-range interactions) coexist. Finally, our calculations predict a band gap of normal ZFO of 2.2 eV and successfully describe the hyperfine properties (isomer shift, magnetic hyperfine field and electric field gradient tensor) at the Fe sites that are seen by Mossbauer Spectroscopy (MS) at 4.2 and 300 K. This comparison enables us to characterize the local spin structure around Fe atoms and to explain the origin of the two hyperfine interactions experimentally observed, giving support to the coexistence of short- and a long-range order below 10.5 K. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/125218 |
url |
http://sedici.unlp.edu.ar/handle/10915/125218 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0925-8388 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2018.01.217 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 746-755 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260516428316672 |
score |
13.13397 |