Furnariidae species recognition using speech-related features and machine learning
- Autores
- Vignolo, Leandro; Sarquis, Juan A.; León, Evelina; Albornoz, Enrique
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The automatic classification of calling bird species is important to achieve more exhaustive environmental monitoring and to manage natural resources. Bird vocalizations allow to recognise new species, their natural history and macro-systematic relations, while automatic systems can speed up and improve all the process. In this work, we use state-of-art features designed for speech and speaker state recognition to classify 25 species of Furnariidae family. Since Furnariidae species inhabit the Litoral Paranaense region of Argentina (South America), this work could promote further research on the topic and the implementation of in-situ monitoring systems. Our analysis includes two widely-known classification techniques: random forest an support vector machines. The results are promising, near 86%, and were validated in a cross-validation scheme.
Sociedad Argentina de Informática e Investigación Operativa (SADIO) - Materia
-
Ciencias Informáticas
bird calls classification
computational bioacoustics
machine learning
speech-related features
furnariidae - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/56982
Ver los metadatos del registro completo
id |
SEDICI_ba760ae96ca2d63e681f454550035a48 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/56982 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Furnariidae species recognition using speech-related features and machine learningVignolo, LeandroSarquis, Juan A.León, EvelinaAlbornoz, EnriqueCiencias Informáticasbird calls classificationcomputational bioacousticsmachine learningspeech-related featuresfurnariidaeThe automatic classification of calling bird species is important to achieve more exhaustive environmental monitoring and to manage natural resources. Bird vocalizations allow to recognise new species, their natural history and macro-systematic relations, while automatic systems can speed up and improve all the process. In this work, we use state-of-art features designed for speech and speaker state recognition to classify 25 species of Furnariidae family. Since Furnariidae species inhabit the Litoral Paranaense region of Argentina (South America), this work could promote further research on the topic and the implementation of in-situ monitoring systems. Our analysis includes two widely-known classification techniques: random forest an support vector machines. The results are promising, near 86%, and were validated in a cross-validation scheme.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2016-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf53-61http://sedici.unlp.edu.ar/handle/10915/56982enginfo:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/ASAI-15_0.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:38:51Zoai:sedici.unlp.edu.ar:10915/56982Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:38:51.725SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Furnariidae species recognition using speech-related features and machine learning |
title |
Furnariidae species recognition using speech-related features and machine learning |
spellingShingle |
Furnariidae species recognition using speech-related features and machine learning Vignolo, Leandro Ciencias Informáticas bird calls classification computational bioacoustics machine learning speech-related features furnariidae |
title_short |
Furnariidae species recognition using speech-related features and machine learning |
title_full |
Furnariidae species recognition using speech-related features and machine learning |
title_fullStr |
Furnariidae species recognition using speech-related features and machine learning |
title_full_unstemmed |
Furnariidae species recognition using speech-related features and machine learning |
title_sort |
Furnariidae species recognition using speech-related features and machine learning |
dc.creator.none.fl_str_mv |
Vignolo, Leandro Sarquis, Juan A. León, Evelina Albornoz, Enrique |
author |
Vignolo, Leandro |
author_facet |
Vignolo, Leandro Sarquis, Juan A. León, Evelina Albornoz, Enrique |
author_role |
author |
author2 |
Sarquis, Juan A. León, Evelina Albornoz, Enrique |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas bird calls classification computational bioacoustics machine learning speech-related features furnariidae |
topic |
Ciencias Informáticas bird calls classification computational bioacoustics machine learning speech-related features furnariidae |
dc.description.none.fl_txt_mv |
The automatic classification of calling bird species is important to achieve more exhaustive environmental monitoring and to manage natural resources. Bird vocalizations allow to recognise new species, their natural history and macro-systematic relations, while automatic systems can speed up and improve all the process. In this work, we use state-of-art features designed for speech and speaker state recognition to classify 25 species of Furnariidae family. Since Furnariidae species inhabit the Litoral Paranaense region of Argentina (South America), this work could promote further research on the topic and the implementation of in-situ monitoring systems. Our analysis includes two widely-known classification techniques: random forest an support vector machines. The results are promising, near 86%, and were validated in a cross-validation scheme. Sociedad Argentina de Informática e Investigación Operativa (SADIO) |
description |
The automatic classification of calling bird species is important to achieve more exhaustive environmental monitoring and to manage natural resources. Bird vocalizations allow to recognise new species, their natural history and macro-systematic relations, while automatic systems can speed up and improve all the process. In this work, we use state-of-art features designed for speech and speaker state recognition to classify 25 species of Furnariidae family. Since Furnariidae species inhabit the Litoral Paranaense region of Argentina (South America), this work could promote further research on the topic and the implementation of in-situ monitoring systems. Our analysis includes two widely-known classification techniques: random forest an support vector machines. The results are promising, near 86%, and were validated in a cross-validation scheme. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/56982 |
url |
http://sedici.unlp.edu.ar/handle/10915/56982 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/ASAI-15_0.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7585 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 53-61 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260249008930816 |
score |
13.13397 |