Furnariidae species recognition using speech-related features and machine learning

Autores
Vignolo, Leandro; Sarquis, Juan A.; León, Evelina; Albornoz, Enrique
Año de publicación
2016
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The automatic classification of calling bird species is important to achieve more exhaustive environmental monitoring and to manage natural resources. Bird vocalizations allow to recognise new species, their natural history and macro-systematic relations, while automatic systems can speed up and improve all the process. In this work, we use state-of-art features designed for speech and speaker state recognition to classify 25 species of Furnariidae family. Since Furnariidae species inhabit the Litoral Paranaense region of Argentina (South America), this work could promote further research on the topic and the implementation of in-situ monitoring systems. Our analysis includes two widely-known classification techniques: random forest an support vector machines. The results are promising, near 86%, and were validated in a cross-validation scheme.
Sociedad Argentina de Informática e Investigación Operativa (SADIO)
Materia
Ciencias Informáticas
bird calls classification
computational bioacoustics
machine learning
speech-related features
furnariidae
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-sa/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/56982

id SEDICI_ba760ae96ca2d63e681f454550035a48
oai_identifier_str oai:sedici.unlp.edu.ar:10915/56982
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Furnariidae species recognition using speech-related features and machine learningVignolo, LeandroSarquis, Juan A.León, EvelinaAlbornoz, EnriqueCiencias Informáticasbird calls classificationcomputational bioacousticsmachine learningspeech-related featuresfurnariidaeThe automatic classification of calling bird species is important to achieve more exhaustive environmental monitoring and to manage natural resources. Bird vocalizations allow to recognise new species, their natural history and macro-systematic relations, while automatic systems can speed up and improve all the process. In this work, we use state-of-art features designed for speech and speaker state recognition to classify 25 species of Furnariidae family. Since Furnariidae species inhabit the Litoral Paranaense region of Argentina (South America), this work could promote further research on the topic and the implementation of in-situ monitoring systems. Our analysis includes two widely-known classification techniques: random forest an support vector machines. The results are promising, near 86%, and were validated in a cross-validation scheme.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2016-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf53-61http://sedici.unlp.edu.ar/handle/10915/56982enginfo:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/ASAI-15_0.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:38:51Zoai:sedici.unlp.edu.ar:10915/56982Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:38:51.725SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Furnariidae species recognition using speech-related features and machine learning
title Furnariidae species recognition using speech-related features and machine learning
spellingShingle Furnariidae species recognition using speech-related features and machine learning
Vignolo, Leandro
Ciencias Informáticas
bird calls classification
computational bioacoustics
machine learning
speech-related features
furnariidae
title_short Furnariidae species recognition using speech-related features and machine learning
title_full Furnariidae species recognition using speech-related features and machine learning
title_fullStr Furnariidae species recognition using speech-related features and machine learning
title_full_unstemmed Furnariidae species recognition using speech-related features and machine learning
title_sort Furnariidae species recognition using speech-related features and machine learning
dc.creator.none.fl_str_mv Vignolo, Leandro
Sarquis, Juan A.
León, Evelina
Albornoz, Enrique
author Vignolo, Leandro
author_facet Vignolo, Leandro
Sarquis, Juan A.
León, Evelina
Albornoz, Enrique
author_role author
author2 Sarquis, Juan A.
León, Evelina
Albornoz, Enrique
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
bird calls classification
computational bioacoustics
machine learning
speech-related features
furnariidae
topic Ciencias Informáticas
bird calls classification
computational bioacoustics
machine learning
speech-related features
furnariidae
dc.description.none.fl_txt_mv The automatic classification of calling bird species is important to achieve more exhaustive environmental monitoring and to manage natural resources. Bird vocalizations allow to recognise new species, their natural history and macro-systematic relations, while automatic systems can speed up and improve all the process. In this work, we use state-of-art features designed for speech and speaker state recognition to classify 25 species of Furnariidae family. Since Furnariidae species inhabit the Litoral Paranaense region of Argentina (South America), this work could promote further research on the topic and the implementation of in-situ monitoring systems. Our analysis includes two widely-known classification techniques: random forest an support vector machines. The results are promising, near 86%, and were validated in a cross-validation scheme.
Sociedad Argentina de Informática e Investigación Operativa (SADIO)
description The automatic classification of calling bird species is important to achieve more exhaustive environmental monitoring and to manage natural resources. Bird vocalizations allow to recognise new species, their natural history and macro-systematic relations, while automatic systems can speed up and improve all the process. In this work, we use state-of-art features designed for speech and speaker state recognition to classify 25 species of Furnariidae family. Since Furnariidae species inhabit the Litoral Paranaense region of Argentina (South America), this work could promote further research on the topic and the implementation of in-situ monitoring systems. Our analysis includes two widely-known classification techniques: random forest an support vector machines. The results are promising, near 86%, and were validated in a cross-validation scheme.
publishDate 2016
dc.date.none.fl_str_mv 2016-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/56982
url http://sedici.unlp.edu.ar/handle/10915/56982
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/ASAI-15_0.pdf
info:eu-repo/semantics/altIdentifier/issn/2451-7585
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-sa/3.0/
Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/3.0/
Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
dc.format.none.fl_str_mv application/pdf
53-61
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260249008930816
score 13.13397