Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods

Autores
Martínez, Laureano; Bersten, Melina Cecilia; Anderson, Joseph P.; González-Gaitán, Santiago; Förster, Francisco; Folatelli, Gastón
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Context. The progenitor and explosion properties of type II supernovae (SNe II) are fundamental to understanding the evolution of massive stars. Particular attention has been paid to the initial masses of their progenitors, but despite the efforts made, the range of initial masses is still uncertain. Direct imaging of progenitors in pre-explosion archival images suggests an upper initial mass cutoff of ∼18 M⊙. However, this is in tension with previous studies in which progenitor masses inferred by light-curve modelling tend to favour high-mass solutions. Moreover, it has been argued that light-curve modelling alone cannot provide a unique solution for the progenitor and explosion properties of SNe II. Aims. We develop a robust method which helps us to constrain the physical parameters of SNe II by simultaneously fitting their bolometric light curve and the evolution of the photospheric velocity to hydrodynamical models using statistical inference techniques. Methods. We created pre-supernova red supergiant models using the stellar evolution code MESA, varying the initial progenitor mass. We then processed the explosion of these progenitors through hydrodynamical simulations, where we changed the explosion energy and the synthesised nickel mass together with its spatial distribution within the ejecta. We compared the results to observations using Markov chain Monte Carlo methods. Results. We apply this method to a well-studied set of SNe with an observed progenitor in pre-explosion images and compare with results in the literature. Progenitor mass constraints are found to be consistent between our results and those derived by pre-SN imaging and the analysis of late-time spectral modelling. Conclusions. We have developed a robust method to infer progenitor and explosion properties of SN II progenitors which is consistent with other methods in the literature. Our results show that hydrodynamical modelling can be used to accurately constrain the physical properties of SNe II. This study is the starting point for a further analysis of a large sample of hydrogen-rich SNe.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
Materia
Astronomía
supernovae: general
stars: evolution
stars: massive
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/132078

id SEDICI_b999b3eab00763e04024cd4520e1f1f2
oai_identifier_str oai:sedici.unlp.edu.ar:10915/132078
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methodsMartínez, LaureanoBersten, Melina CeciliaAnderson, Joseph P.González-Gaitán, SantiagoFörster, FranciscoFolatelli, GastónAstronomíasupernovae: generalstars: evolutionstars: massiveContext. The progenitor and explosion properties of type II supernovae (SNe II) are fundamental to understanding the evolution of massive stars. Particular attention has been paid to the initial masses of their progenitors, but despite the efforts made, the range of initial masses is still uncertain. Direct imaging of progenitors in pre-explosion archival images suggests an upper initial mass cutoff of ∼18 M⊙. However, this is in tension with previous studies in which progenitor masses inferred by light-curve modelling tend to favour high-mass solutions. Moreover, it has been argued that light-curve modelling alone cannot provide a unique solution for the progenitor and explosion properties of SNe II. Aims. We develop a robust method which helps us to constrain the physical parameters of SNe II by simultaneously fitting their bolometric light curve and the evolution of the photospheric velocity to hydrodynamical models using statistical inference techniques. Methods. We created pre-supernova red supergiant models using the stellar evolution code MESA, varying the initial progenitor mass. We then processed the explosion of these progenitors through hydrodynamical simulations, where we changed the explosion energy and the synthesised nickel mass together with its spatial distribution within the ejecta. We compared the results to observations using Markov chain Monte Carlo methods. Results. We apply this method to a well-studied set of SNe with an observed progenitor in pre-explosion images and compare with results in the literature. Progenitor mass constraints are found to be consistent between our results and those derived by pre-SN imaging and the analysis of late-time spectral modelling. Conclusions. We have developed a robust method to infer progenitor and explosion properties of SN II progenitors which is consistent with other methods in the literature. Our results show that hydrodynamical modelling can be used to accurately constrain the physical properties of SNe II. This study is the starting point for a further analysis of a large sample of hydrogen-rich SNe.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2020-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/132078enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/issn/1432-0746info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202038393info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:18Zoai:sedici.unlp.edu.ar:10915/132078Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:18.6SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods
title Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods
spellingShingle Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods
Martínez, Laureano
Astronomía
supernovae: general
stars: evolution
stars: massive
title_short Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods
title_full Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods
title_fullStr Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods
title_full_unstemmed Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods
title_sort Progenitor properties of type II supernovae: fitting to hydrodynamical models using Markov chain Monte Carlo methods
dc.creator.none.fl_str_mv Martínez, Laureano
Bersten, Melina Cecilia
Anderson, Joseph P.
González-Gaitán, Santiago
Förster, Francisco
Folatelli, Gastón
author Martínez, Laureano
author_facet Martínez, Laureano
Bersten, Melina Cecilia
Anderson, Joseph P.
González-Gaitán, Santiago
Förster, Francisco
Folatelli, Gastón
author_role author
author2 Bersten, Melina Cecilia
Anderson, Joseph P.
González-Gaitán, Santiago
Förster, Francisco
Folatelli, Gastón
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Astronomía
supernovae: general
stars: evolution
stars: massive
topic Astronomía
supernovae: general
stars: evolution
stars: massive
dc.description.none.fl_txt_mv Context. The progenitor and explosion properties of type II supernovae (SNe II) are fundamental to understanding the evolution of massive stars. Particular attention has been paid to the initial masses of their progenitors, but despite the efforts made, the range of initial masses is still uncertain. Direct imaging of progenitors in pre-explosion archival images suggests an upper initial mass cutoff of ∼18 M⊙. However, this is in tension with previous studies in which progenitor masses inferred by light-curve modelling tend to favour high-mass solutions. Moreover, it has been argued that light-curve modelling alone cannot provide a unique solution for the progenitor and explosion properties of SNe II. Aims. We develop a robust method which helps us to constrain the physical parameters of SNe II by simultaneously fitting their bolometric light curve and the evolution of the photospheric velocity to hydrodynamical models using statistical inference techniques. Methods. We created pre-supernova red supergiant models using the stellar evolution code MESA, varying the initial progenitor mass. We then processed the explosion of these progenitors through hydrodynamical simulations, where we changed the explosion energy and the synthesised nickel mass together with its spatial distribution within the ejecta. We compared the results to observations using Markov chain Monte Carlo methods. Results. We apply this method to a well-studied set of SNe with an observed progenitor in pre-explosion images and compare with results in the literature. Progenitor mass constraints are found to be consistent between our results and those derived by pre-SN imaging and the analysis of late-time spectral modelling. Conclusions. We have developed a robust method to infer progenitor and explosion properties of SN II progenitors which is consistent with other methods in the literature. Our results show that hydrodynamical modelling can be used to accurately constrain the physical properties of SNe II. This study is the starting point for a further analysis of a large sample of hydrogen-rich SNe.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata
description Context. The progenitor and explosion properties of type II supernovae (SNe II) are fundamental to understanding the evolution of massive stars. Particular attention has been paid to the initial masses of their progenitors, but despite the efforts made, the range of initial masses is still uncertain. Direct imaging of progenitors in pre-explosion archival images suggests an upper initial mass cutoff of ∼18 M⊙. However, this is in tension with previous studies in which progenitor masses inferred by light-curve modelling tend to favour high-mass solutions. Moreover, it has been argued that light-curve modelling alone cannot provide a unique solution for the progenitor and explosion properties of SNe II. Aims. We develop a robust method which helps us to constrain the physical parameters of SNe II by simultaneously fitting their bolometric light curve and the evolution of the photospheric velocity to hydrodynamical models using statistical inference techniques. Methods. We created pre-supernova red supergiant models using the stellar evolution code MESA, varying the initial progenitor mass. We then processed the explosion of these progenitors through hydrodynamical simulations, where we changed the explosion energy and the synthesised nickel mass together with its spatial distribution within the ejecta. We compared the results to observations using Markov chain Monte Carlo methods. Results. We apply this method to a well-studied set of SNe with an observed progenitor in pre-explosion images and compare with results in the literature. Progenitor mass constraints are found to be consistent between our results and those derived by pre-SN imaging and the analysis of late-time spectral modelling. Conclusions. We have developed a robust method to infer progenitor and explosion properties of SN II progenitors which is consistent with other methods in the literature. Our results show that hydrodynamical modelling can be used to accurately constrain the physical properties of SNe II. This study is the starting point for a further analysis of a large sample of hydrogen-rich SNe.
publishDate 2020
dc.date.none.fl_str_mv 2020-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/132078
url http://sedici.unlp.edu.ar/handle/10915/132078
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/issn/1432-0746
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/202038393
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616192804782080
score 13.070432