A quantitative link between globular clusters and the stellar haloes in elliptical galaxies

Autores
Forte, Juan Carlos; Faifer, Favio Raúl; Geisler, Doug
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper explores the quantitative connection between globular clusters and the 'diffuse' stellar population of the galaxies they are associated with. Both NGC 1399 and NGC 4486 (M87) are well suited for this kind of analysis due to their large globular cluster populations. The main assumption of our Monte Carlo based models is that each globular cluster is formed along with a given diffuse stellar mass that shares the same spatial distribution, chemical composition and age. The main globular cluster subpopulations, that determine the observed bimodal colour distribution, are decomposed avoiding a priori parametric (e.g. Gaussian) fits and using a new colour (C - T 1)-metallicity relation. The eventual detectability of a 'blue' tilt in the colour-magnitude diagrams of the blue globular cluster subpopulation is also addressed. A successful link between globular clusters and the stellar galaxy halo is established by assuming that the number of globular clusters per associated diffuse stellar mass t is a function of total abundance [Z/H] and behaves as t = γ exp(-δ[Z/H]) (i.e. increases when abundance decreases). The simulations allow the prediction of a surface brightness profile for each galaxy through these two free parameters' approximation. The γ, δ parameters that provide the best fit to the observed profiles in the B band, in turn, determine several features, namely, large-scale halo colour gradients, globular cluster-halo colour offset, clusters' cumulative specific frequencies, and stellar metallicity distributions, that compare well with observations. The results suggest the co-existence of two distinct stellar populations characterized by widely different metallicities and spatial distributions. One of these populations (connected with the blue globular clusters) is metal poor, highly homogeneous, exhibits an extended spatial distribution and becomes more evident at large galactocentric radius contributing with some 20 per cent of the total stellar mass. In turn, the stellar population associated with the red globular clusters is extremely heterogeneous and dominates the inner region of both galaxies. Remarkably, and although the cluster populations of these galaxies exhibit detectable differences in colour distribution, the δ parameter that determines the shape of the brightness profiles of both galaxies has the same value, δ ≈ 1.1 to 1.2 ± 0.1.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Galaxies: general
Galaxies: haloes
Galaxies: star clusters
Globular clusters: individual: NGC 1399
Globular clusters: individual: NGC 4486
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83526

id SEDICI_b89076ba1f0c658d929915d3a241ad89
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83526
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A quantitative link between globular clusters and the stellar haloes in elliptical galaxiesForte, Juan CarlosFaifer, Favio RaúlGeisler, DougCiencias AstronómicasGalaxies: generalGalaxies: haloesGalaxies: star clustersGlobular clusters: individual: NGC 1399Globular clusters: individual: NGC 4486This paper explores the quantitative connection between globular clusters and the 'diffuse' stellar population of the galaxies they are associated with. Both NGC 1399 and NGC 4486 (M87) are well suited for this kind of analysis due to their large globular cluster populations. The main assumption of our Monte Carlo based models is that each globular cluster is formed along with a given diffuse stellar mass that shares the same spatial distribution, chemical composition and age. The main globular cluster subpopulations, that determine the observed bimodal colour distribution, are decomposed avoiding a priori parametric (e.g. Gaussian) fits and using a new colour (C - T 1)-metallicity relation. The eventual detectability of a 'blue' tilt in the colour-magnitude diagrams of the blue globular cluster subpopulation is also addressed. A successful link between globular clusters and the stellar galaxy halo is established by assuming that the number of globular clusters per associated diffuse stellar mass t is a function of total abundance [Z/H] and behaves as t = γ exp(-δ[Z/H]) (i.e. increases when abundance decreases). The simulations allow the prediction of a surface brightness profile for each galaxy through these two free parameters' approximation. The γ, δ parameters that provide the best fit to the observed profiles in the B band, in turn, determine several features, namely, large-scale halo colour gradients, globular cluster-halo colour offset, clusters' cumulative specific frequencies, and stellar metallicity distributions, that compare well with observations. The results suggest the co-existence of two distinct stellar populations characterized by widely different metallicities and spatial distributions. One of these populations (connected with the blue globular clusters) is metal poor, highly homogeneous, exhibits an extended spatial distribution and becomes more evident at large galactocentric radius contributing with some 20 per cent of the total stellar mass. In turn, the stellar population associated with the red globular clusters is extremely heterogeneous and dominates the inner region of both galaxies. Remarkably, and although the cluster populations of these galaxies exhibit detectable differences in colour distribution, the δ parameter that determines the shape of the brightness profiles of both galaxies has the same value, δ ≈ 1.1 to 1.2 ± 0.1.Facultad de Ciencias Astronómicas y Geofísicas2007info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1947-1964http://sedici.unlp.edu.ar/handle/10915/83526enginfo:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2007.12515.xinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:41Zoai:sedici.unlp.edu.ar:10915/83526Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:42.032SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A quantitative link between globular clusters and the stellar haloes in elliptical galaxies
title A quantitative link between globular clusters and the stellar haloes in elliptical galaxies
spellingShingle A quantitative link between globular clusters and the stellar haloes in elliptical galaxies
Forte, Juan Carlos
Ciencias Astronómicas
Galaxies: general
Galaxies: haloes
Galaxies: star clusters
Globular clusters: individual: NGC 1399
Globular clusters: individual: NGC 4486
title_short A quantitative link between globular clusters and the stellar haloes in elliptical galaxies
title_full A quantitative link between globular clusters and the stellar haloes in elliptical galaxies
title_fullStr A quantitative link between globular clusters and the stellar haloes in elliptical galaxies
title_full_unstemmed A quantitative link between globular clusters and the stellar haloes in elliptical galaxies
title_sort A quantitative link between globular clusters and the stellar haloes in elliptical galaxies
dc.creator.none.fl_str_mv Forte, Juan Carlos
Faifer, Favio Raúl
Geisler, Doug
author Forte, Juan Carlos
author_facet Forte, Juan Carlos
Faifer, Favio Raúl
Geisler, Doug
author_role author
author2 Faifer, Favio Raúl
Geisler, Doug
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Galaxies: general
Galaxies: haloes
Galaxies: star clusters
Globular clusters: individual: NGC 1399
Globular clusters: individual: NGC 4486
topic Ciencias Astronómicas
Galaxies: general
Galaxies: haloes
Galaxies: star clusters
Globular clusters: individual: NGC 1399
Globular clusters: individual: NGC 4486
dc.description.none.fl_txt_mv This paper explores the quantitative connection between globular clusters and the 'diffuse' stellar population of the galaxies they are associated with. Both NGC 1399 and NGC 4486 (M87) are well suited for this kind of analysis due to their large globular cluster populations. The main assumption of our Monte Carlo based models is that each globular cluster is formed along with a given diffuse stellar mass that shares the same spatial distribution, chemical composition and age. The main globular cluster subpopulations, that determine the observed bimodal colour distribution, are decomposed avoiding a priori parametric (e.g. Gaussian) fits and using a new colour (C - T 1)-metallicity relation. The eventual detectability of a 'blue' tilt in the colour-magnitude diagrams of the blue globular cluster subpopulation is also addressed. A successful link between globular clusters and the stellar galaxy halo is established by assuming that the number of globular clusters per associated diffuse stellar mass t is a function of total abundance [Z/H] and behaves as t = γ exp(-δ[Z/H]) (i.e. increases when abundance decreases). The simulations allow the prediction of a surface brightness profile for each galaxy through these two free parameters' approximation. The γ, δ parameters that provide the best fit to the observed profiles in the B band, in turn, determine several features, namely, large-scale halo colour gradients, globular cluster-halo colour offset, clusters' cumulative specific frequencies, and stellar metallicity distributions, that compare well with observations. The results suggest the co-existence of two distinct stellar populations characterized by widely different metallicities and spatial distributions. One of these populations (connected with the blue globular clusters) is metal poor, highly homogeneous, exhibits an extended spatial distribution and becomes more evident at large galactocentric radius contributing with some 20 per cent of the total stellar mass. In turn, the stellar population associated with the red globular clusters is extremely heterogeneous and dominates the inner region of both galaxies. Remarkably, and although the cluster populations of these galaxies exhibit detectable differences in colour distribution, the δ parameter that determines the shape of the brightness profiles of both galaxies has the same value, δ ≈ 1.1 to 1.2 ± 0.1.
Facultad de Ciencias Astronómicas y Geofísicas
description This paper explores the quantitative connection between globular clusters and the 'diffuse' stellar population of the galaxies they are associated with. Both NGC 1399 and NGC 4486 (M87) are well suited for this kind of analysis due to their large globular cluster populations. The main assumption of our Monte Carlo based models is that each globular cluster is formed along with a given diffuse stellar mass that shares the same spatial distribution, chemical composition and age. The main globular cluster subpopulations, that determine the observed bimodal colour distribution, are decomposed avoiding a priori parametric (e.g. Gaussian) fits and using a new colour (C - T 1)-metallicity relation. The eventual detectability of a 'blue' tilt in the colour-magnitude diagrams of the blue globular cluster subpopulation is also addressed. A successful link between globular clusters and the stellar galaxy halo is established by assuming that the number of globular clusters per associated diffuse stellar mass t is a function of total abundance [Z/H] and behaves as t = γ exp(-δ[Z/H]) (i.e. increases when abundance decreases). The simulations allow the prediction of a surface brightness profile for each galaxy through these two free parameters' approximation. The γ, δ parameters that provide the best fit to the observed profiles in the B band, in turn, determine several features, namely, large-scale halo colour gradients, globular cluster-halo colour offset, clusters' cumulative specific frequencies, and stellar metallicity distributions, that compare well with observations. The results suggest the co-existence of two distinct stellar populations characterized by widely different metallicities and spatial distributions. One of these populations (connected with the blue globular clusters) is metal poor, highly homogeneous, exhibits an extended spatial distribution and becomes more evident at large galactocentric radius contributing with some 20 per cent of the total stellar mass. In turn, the stellar population associated with the red globular clusters is extremely heterogeneous and dominates the inner region of both galaxies. Remarkably, and although the cluster populations of these galaxies exhibit detectable differences in colour distribution, the δ parameter that determines the shape of the brightness profiles of both galaxies has the same value, δ ≈ 1.1 to 1.2 ± 0.1.
publishDate 2007
dc.date.none.fl_str_mv 2007
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83526
url http://sedici.unlp.edu.ar/handle/10915/83526
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0035-8711
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2966.2007.12515.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1947-1964
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616029283549184
score 13.070432