On asteroidal sets in chordal graphs
- Autores
- Alcón, Liliana Graciela
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that if G has no separating simplicial cliques then an(G)=l(G). A graph G is minimal k-asteroidal if an(G)=k and an(H)
3; for k=3 it is the family described by Lekerkerker and Boland to characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph, all the above parameters are equal to k. In addition, we characterize the split graphs that are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we applied our results on asteroidal sets to describe the clutters with k edges that are minor-minimal in the sense that every minor has less than k edges.
Facultad de Ciencias Exactas - Materia
-
Matemática
Asteroidal number
Chordal graphs
Clique separators
Clutters
Leafage
Sperner families - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/85141
Ver los metadatos del registro completo
id |
SEDICI_b7896870f874a2b6d457649402561ef4 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/85141 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On asteroidal sets in chordal graphsAlcón, Liliana GracielaMatemáticaAsteroidal numberChordal graphsClique separatorsCluttersLeafageSperner familiesWe analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that if G has no separating simplicial cliques then an(G)=l(G). A graph G is minimal k-asteroidal if an(G)=k and an(H)<k for every proper connected induced subgraph H of G. The family of minimal k-asteroidal chordal graphs is unknown for every k>3; for k=3 it is the family described by Lekerkerker and Boland to characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph, all the above parameters are equal to k. In addition, we characterize the split graphs that are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we applied our results on asteroidal sets to describe the clutters with k edges that are minor-minimal in the sense that every minor has less than k edges.Facultad de Ciencias Exactas2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf482-491http://sedici.unlp.edu.ar/handle/10915/85141enginfo:eu-repo/semantics/altIdentifier/issn/0166-218Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2013.04.019info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:41Zoai:sedici.unlp.edu.ar:10915/85141Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:41.339SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On asteroidal sets in chordal graphs |
title |
On asteroidal sets in chordal graphs |
spellingShingle |
On asteroidal sets in chordal graphs Alcón, Liliana Graciela Matemática Asteroidal number Chordal graphs Clique separators Clutters Leafage Sperner families |
title_short |
On asteroidal sets in chordal graphs |
title_full |
On asteroidal sets in chordal graphs |
title_fullStr |
On asteroidal sets in chordal graphs |
title_full_unstemmed |
On asteroidal sets in chordal graphs |
title_sort |
On asteroidal sets in chordal graphs |
dc.creator.none.fl_str_mv |
Alcón, Liliana Graciela |
author |
Alcón, Liliana Graciela |
author_facet |
Alcón, Liliana Graciela |
author_role |
author |
dc.subject.none.fl_str_mv |
Matemática Asteroidal number Chordal graphs Clique separators Clutters Leafage Sperner families |
topic |
Matemática Asteroidal number Chordal graphs Clique separators Clutters Leafage Sperner families |
dc.description.none.fl_txt_mv |
We analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that if G has no separating simplicial cliques then an(G)=l(G). A graph G is minimal k-asteroidal if an(G)=k and an(H)<k for every proper connected induced subgraph H of G. The family of minimal k-asteroidal chordal graphs is unknown for every k>3; for k=3 it is the family described by Lekerkerker and Boland to characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph, all the above parameters are equal to k. In addition, we characterize the split graphs that are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we applied our results on asteroidal sets to describe the clutters with k edges that are minor-minimal in the sense that every minor has less than k edges. Facultad de Ciencias Exactas |
description |
We analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that if G has no separating simplicial cliques then an(G)=l(G). A graph G is minimal k-asteroidal if an(G)=k and an(H)<k for every proper connected induced subgraph H of G. The family of minimal k-asteroidal chordal graphs is unknown for every k>3; for k=3 it is the family described by Lekerkerker and Boland to characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph, all the above parameters are equal to k. In addition, we characterize the split graphs that are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we applied our results on asteroidal sets to describe the clutters with k edges that are minor-minimal in the sense that every minor has less than k edges. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/85141 |
url |
http://sedici.unlp.edu.ar/handle/10915/85141 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0166-218X info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2013.04.019 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 482-491 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260362574954496 |
score |
13.13397 |