On asteroidal sets in chordal graphs

Autores
Alcón, Liliana Graciela
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that if G has no separating simplicial cliques then an(G)=l(G). A graph G is minimal k-asteroidal if an(G)=k and an(H)3; for k=3 it is the family described by Lekerkerker and Boland to characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph, all the above parameters are equal to k. In addition, we characterize the split graphs that are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we applied our results on asteroidal sets to describe the clutters with k edges that are minor-minimal in the sense that every minor has less than k edges.
Facultad de Ciencias Exactas
Materia
Matemática
Asteroidal number
Chordal graphs
Clique separators
Clutters
Leafage
Sperner families
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/85141

id SEDICI_b7896870f874a2b6d457649402561ef4
oai_identifier_str oai:sedici.unlp.edu.ar:10915/85141
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling On asteroidal sets in chordal graphsAlcón, Liliana GracielaMatemáticaAsteroidal numberChordal graphsClique separatorsCluttersLeafageSperner familiesWe analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that if G has no separating simplicial cliques then an(G)=l(G). A graph G is minimal k-asteroidal if an(G)=k and an(H)<k for every proper connected induced subgraph H of G. The family of minimal k-asteroidal chordal graphs is unknown for every k>3; for k=3 it is the family described by Lekerkerker and Boland to characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph, all the above parameters are equal to k. In addition, we characterize the split graphs that are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we applied our results on asteroidal sets to describe the clutters with k edges that are minor-minimal in the sense that every minor has less than k edges.Facultad de Ciencias Exactas2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf482-491http://sedici.unlp.edu.ar/handle/10915/85141enginfo:eu-repo/semantics/altIdentifier/issn/0166-218Xinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2013.04.019info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:48:41Zoai:sedici.unlp.edu.ar:10915/85141Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:48:41.339SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv On asteroidal sets in chordal graphs
title On asteroidal sets in chordal graphs
spellingShingle On asteroidal sets in chordal graphs
Alcón, Liliana Graciela
Matemática
Asteroidal number
Chordal graphs
Clique separators
Clutters
Leafage
Sperner families
title_short On asteroidal sets in chordal graphs
title_full On asteroidal sets in chordal graphs
title_fullStr On asteroidal sets in chordal graphs
title_full_unstemmed On asteroidal sets in chordal graphs
title_sort On asteroidal sets in chordal graphs
dc.creator.none.fl_str_mv Alcón, Liliana Graciela
author Alcón, Liliana Graciela
author_facet Alcón, Liliana Graciela
author_role author
dc.subject.none.fl_str_mv Matemática
Asteroidal number
Chordal graphs
Clique separators
Clutters
Leafage
Sperner families
topic Matemática
Asteroidal number
Chordal graphs
Clique separators
Clutters
Leafage
Sperner families
dc.description.none.fl_txt_mv We analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that if G has no separating simplicial cliques then an(G)=l(G). A graph G is minimal k-asteroidal if an(G)=k and an(H)<k for every proper connected induced subgraph H of G. The family of minimal k-asteroidal chordal graphs is unknown for every k>3; for k=3 it is the family described by Lekerkerker and Boland to characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph, all the above parameters are equal to k. In addition, we characterize the split graphs that are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we applied our results on asteroidal sets to describe the clutters with k edges that are minor-minimal in the sense that every minor has less than k edges.
Facultad de Ciencias Exactas
description We analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that if G has no separating simplicial cliques then an(G)=l(G). A graph G is minimal k-asteroidal if an(G)=k and an(H)<k for every proper connected induced subgraph H of G. The family of minimal k-asteroidal chordal graphs is unknown for every k>3; for k=3 it is the family described by Lekerkerker and Boland to characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph, all the above parameters are equal to k. In addition, we characterize the split graphs that are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we applied our results on asteroidal sets to describe the clutters with k edges that are minor-minimal in the sense that every minor has less than k edges.
publishDate 2014
dc.date.none.fl_str_mv 2014
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/85141
url http://sedici.unlp.edu.ar/handle/10915/85141
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0166-218X
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.dam.2013.04.019
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
482-491
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260362574954496
score 13.13397