Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions
- Autores
- Gluzmann, Pablo Alfredo; Panigo, Demian Tupac
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this article, we present gsreg, a new automatic model-selection technique for cross-section, time-series, and panel-data regressions. Like other exhaustive search algorithms (for example, vselect), gsreg avoids characteristic path-dependence traps of standard approaches as well as backward- and forwardlooking approaches (like PcGets or relevant transformation of the inputs network approach). However, gsreg is the first code that 1) guarantees optimality with out-of-sample selection criteria; 2) allows residual testing for each alternative; and 3) provides (depending on user specifications) a full-information dataset with outcome statistics for every alternative model.
Facultad de Ciencias Económicas
Centro de Estudios Distributivos, Laborales y Sociales - Materia
-
Ciencias Económicas
st0383
gsreg
Automatic model selection
vselect
PcGets
RETINA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/123907
Ver los metadatos del registro completo
| id |
SEDICI_b71625f4ecf7e2eda252e632d8b9bac5 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/123907 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressionsGluzmann, Pablo AlfredoPanigo, Demian TupacCiencias Económicasst0383gsregAutomatic model selectionvselectPcGetsRETINAIn this article, we present gsreg, a new automatic model-selection technique for cross-section, time-series, and panel-data regressions. Like other exhaustive search algorithms (for example, vselect), gsreg avoids characteristic path-dependence traps of standard approaches as well as backward- and forwardlooking approaches (like PcGets or relevant transformation of the inputs network approach). However, gsreg is the first code that 1) guarantees optimality with out-of-sample selection criteria; 2) allows residual testing for each alternative; and 3) provides (depending on user specifications) a full-information dataset with outcome statistics for every alternative model.Facultad de Ciencias EconómicasCentro de Estudios Distributivos, Laborales y Sociales2015info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf325-349http://sedici.unlp.edu.ar/handle/10915/123907enginfo:eu-repo/semantics/altIdentifier/issn/1536-867Xinfo:eu-repo/semantics/altIdentifier/issn/1536-8734info:eu-repo/semantics/altIdentifier/doi/10.1177/1536867x1501500201info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:10:19Zoai:sedici.unlp.edu.ar:10915/123907Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:10:19.563SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| title |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| spellingShingle |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions Gluzmann, Pablo Alfredo Ciencias Económicas st0383 gsreg Automatic model selection vselect PcGets RETINA |
| title_short |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| title_full |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| title_fullStr |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| title_full_unstemmed |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| title_sort |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| dc.creator.none.fl_str_mv |
Gluzmann, Pablo Alfredo Panigo, Demian Tupac |
| author |
Gluzmann, Pablo Alfredo |
| author_facet |
Gluzmann, Pablo Alfredo Panigo, Demian Tupac |
| author_role |
author |
| author2 |
Panigo, Demian Tupac |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Económicas st0383 gsreg Automatic model selection vselect PcGets RETINA |
| topic |
Ciencias Económicas st0383 gsreg Automatic model selection vselect PcGets RETINA |
| dc.description.none.fl_txt_mv |
In this article, we present gsreg, a new automatic model-selection technique for cross-section, time-series, and panel-data regressions. Like other exhaustive search algorithms (for example, vselect), gsreg avoids characteristic path-dependence traps of standard approaches as well as backward- and forwardlooking approaches (like PcGets or relevant transformation of the inputs network approach). However, gsreg is the first code that 1) guarantees optimality with out-of-sample selection criteria; 2) allows residual testing for each alternative; and 3) provides (depending on user specifications) a full-information dataset with outcome statistics for every alternative model. Facultad de Ciencias Económicas Centro de Estudios Distributivos, Laborales y Sociales |
| description |
In this article, we present gsreg, a new automatic model-selection technique for cross-section, time-series, and panel-data regressions. Like other exhaustive search algorithms (for example, vselect), gsreg avoids characteristic path-dependence traps of standard approaches as well as backward- and forwardlooking approaches (like PcGets or relevant transformation of the inputs network approach). However, gsreg is the first code that 1) guarantees optimality with out-of-sample selection criteria; 2) allows residual testing for each alternative; and 3) provides (depending on user specifications) a full-information dataset with outcome statistics for every alternative model. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/123907 |
| url |
http://sedici.unlp.edu.ar/handle/10915/123907 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1536-867X info:eu-repo/semantics/altIdentifier/issn/1536-8734 info:eu-repo/semantics/altIdentifier/doi/10.1177/1536867x1501500201 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 325-349 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783439271886848 |
| score |
12.982451 |