Low-temperature Glauber dynamics under weak competing interactions
- Autores
- Grynberg, Marcelo Daniel
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the low but nonzero temperature regimes of the Glauber dynamics in a chain of Ising spins with first- and second-neighbor interactions J1, J2. For 0 < -J2 /|J1 | < 1 it is known that at T = 0 the dynamics is both metastable and noncoarsening, while being always ergodic and coarsening in the limit of T → 0+ . Based on finite-size scaling analyses of relaxation times, here we argue that in that latter situation the asymptotic kinetics of small or weakly frustrated -J2 /| J1| ratios is characterized by an almost ballistic dynamic exponent z ≃ 1.03(2) and arbitrarily slow velocities of growth. By contrast, for noncompeting interactions the coarsening length scales are estimated to be almost diffusive.
Facultad de Ciencias Exactas - Materia
-
Ciencias Astronómicas
Frustration
Metastability
Ballitic exponents - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/99415
Ver los metadatos del registro completo
id |
SEDICI_b6f726d6d66c4de91175437d7b08654c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/99415 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Low-temperature Glauber dynamics under weak competing interactionsGrynberg, Marcelo DanielCiencias AstronómicasFrustrationMetastabilityBallitic exponentsWe consider the low but nonzero temperature regimes of the Glauber dynamics in a chain of Ising spins with first- and second-neighbor interactions J<sub>1</sub>, J<sub>2</sub>. For 0 < -J<sub>2</sub> /|J<sub>1</sub> | < 1 it is known that at T = 0 the dynamics is both metastable and noncoarsening, while being always ergodic and coarsening in the limit of T → 0<sup>+</sup> . Based on finite-size scaling analyses of relaxation times, here we argue that in that latter situation the asymptotic kinetics of small or weakly frustrated -J<sub>2</sub> /| J<sub>1</sub>| ratios is characterized by an almost ballistic dynamic exponent z ≃ 1.03(2) and arbitrarily slow velocities of growth. By contrast, for noncompeting interactions the coarsening length scales are estimated to be almost diffusive.Facultad de Ciencias Exactas2015-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1-9http://sedici.unlp.edu.ar/handle/10915/99415enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/47908info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.032129info:eu-repo/semantics/altIdentifier/issn/1063-651Xinfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.91.032129info:eu-repo/semantics/altIdentifier/hdl/11336/47908info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:20:05Zoai:sedici.unlp.edu.ar:10915/99415Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:20:06.041SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Low-temperature Glauber dynamics under weak competing interactions |
title |
Low-temperature Glauber dynamics under weak competing interactions |
spellingShingle |
Low-temperature Glauber dynamics under weak competing interactions Grynberg, Marcelo Daniel Ciencias Astronómicas Frustration Metastability Ballitic exponents |
title_short |
Low-temperature Glauber dynamics under weak competing interactions |
title_full |
Low-temperature Glauber dynamics under weak competing interactions |
title_fullStr |
Low-temperature Glauber dynamics under weak competing interactions |
title_full_unstemmed |
Low-temperature Glauber dynamics under weak competing interactions |
title_sort |
Low-temperature Glauber dynamics under weak competing interactions |
dc.creator.none.fl_str_mv |
Grynberg, Marcelo Daniel |
author |
Grynberg, Marcelo Daniel |
author_facet |
Grynberg, Marcelo Daniel |
author_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Frustration Metastability Ballitic exponents |
topic |
Ciencias Astronómicas Frustration Metastability Ballitic exponents |
dc.description.none.fl_txt_mv |
We consider the low but nonzero temperature regimes of the Glauber dynamics in a chain of Ising spins with first- and second-neighbor interactions J<sub>1</sub>, J<sub>2</sub>. For 0 < -J<sub>2</sub> /|J<sub>1</sub> | < 1 it is known that at T = 0 the dynamics is both metastable and noncoarsening, while being always ergodic and coarsening in the limit of T → 0<sup>+</sup> . Based on finite-size scaling analyses of relaxation times, here we argue that in that latter situation the asymptotic kinetics of small or weakly frustrated -J<sub>2</sub> /| J<sub>1</sub>| ratios is characterized by an almost ballistic dynamic exponent z ≃ 1.03(2) and arbitrarily slow velocities of growth. By contrast, for noncompeting interactions the coarsening length scales are estimated to be almost diffusive. Facultad de Ciencias Exactas |
description |
We consider the low but nonzero temperature regimes of the Glauber dynamics in a chain of Ising spins with first- and second-neighbor interactions J<sub>1</sub>, J<sub>2</sub>. For 0 < -J<sub>2</sub> /|J<sub>1</sub> | < 1 it is known that at T = 0 the dynamics is both metastable and noncoarsening, while being always ergodic and coarsening in the limit of T → 0<sup>+</sup> . Based on finite-size scaling analyses of relaxation times, here we argue that in that latter situation the asymptotic kinetics of small or weakly frustrated -J<sub>2</sub> /| J<sub>1</sub>| ratios is characterized by an almost ballistic dynamic exponent z ≃ 1.03(2) and arbitrarily slow velocities of growth. By contrast, for noncompeting interactions the coarsening length scales are estimated to be almost diffusive. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/99415 |
url |
http://sedici.unlp.edu.ar/handle/10915/99415 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/47908 info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.032129 info:eu-repo/semantics/altIdentifier/issn/1063-651X info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.91.032129 info:eu-repo/semantics/altIdentifier/hdl/11336/47908 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1-9 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616075047600128 |
score |
13.070432 |