Open clusters in the Third Galactic Quadrant : III. Alleged binary clusters
- Autores
- Vázquez, Rubén Ángel; Moitinho, A.; Carraro, G.; Dias, W. S.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Aims: We aim to determine accurate distances and ages of eight open clusters in order to: (1) assess their possible binarity (2) provide probes to trace the structure of the Third Galactic Quadrant. Methods: Cluster reddenings, distances, ages and metallicities are derived from ZAMS and isochrone fits in UBVRI photometric diagrams. Field contamination is reduced by restricting analysis to stars within the cluster limits derived from star counts. Further membership control is done by requiring that stars have consistent positions in several diagrams and by using published spectral types. Results: The derived distances, ages and metallicities have shown that none of the analysed clusters compose binary/double systems. Of the four candidate pairs, only NGC 2383/NGC 2384 are close to each other, but have different metallicities and ages. Ruprecht 72 and Ruprecht 158 are not clusters but fluctuations of the field stellar density. Haffner 18 is found to be the superposition of two stellar groups at different distances: Haffner 18(1) at 4.5 kpc and Haffner 18(2) between 9.5 and 11.4 kpc from the Sun. The derived distances and ages have been used to situate the clusters in the Galactic context. In particular, young stellar groups trace spiral structure at large Galactocentric radii. At least two clusters formed during the last few 108 yr in an interstellar medium with less than solar abundances. Conclusions: In contrast with the LMC, double clusters are apparently rare, or even non existent, in the undisturbed environment of the Third Galactic Quadrant. This leaves open the question of whether binary clusters form more easily toward denser and more violent regions of the Milky Way such as the inner Galaxy.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
Galaxy: structure
Open clusters and associations: general - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/82627
Ver los metadatos del registro completo
id |
SEDICI_b47b83a4337c336e06c3816c529aa854 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/82627 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Open clusters in the Third Galactic Quadrant : III. Alleged binary clustersVázquez, Rubén ÁngelMoitinho, A.Carraro, G.Dias, W. S.Ciencias AstronómicasGalaxy: structureOpen clusters and associations: generalAims: We aim to determine accurate distances and ages of eight open clusters in order to: (1) assess their possible binarity (2) provide probes to trace the structure of the Third Galactic Quadrant. Methods: Cluster reddenings, distances, ages and metallicities are derived from ZAMS and isochrone fits in UBVRI photometric diagrams. Field contamination is reduced by restricting analysis to stars within the cluster limits derived from star counts. Further membership control is done by requiring that stars have consistent positions in several diagrams and by using published spectral types. Results: The derived distances, ages and metallicities have shown that none of the analysed clusters compose binary/double systems. Of the four candidate pairs, only NGC 2383/NGC 2384 are close to each other, but have different metallicities and ages. Ruprecht 72 and Ruprecht 158 are not clusters but fluctuations of the field stellar density. Haffner 18 is found to be the superposition of two stellar groups at different distances: Haffner 18(1) at 4.5 kpc and Haffner 18(2) between 9.5 and 11.4 kpc from the Sun. The derived distances and ages have been used to situate the clusters in the Galactic context. In particular, young stellar groups trace spiral structure at large Galactocentric radii. At least two clusters formed during the last few 108 yr in an interstellar medium with less than solar abundances. Conclusions: In contrast with the LMC, double clusters are apparently rare, or even non existent, in the undisturbed environment of the Third Galactic Quadrant. This leaves open the question of whether binary clusters form more easily toward denser and more violent regions of the Milky Way such as the inner Galaxy.Facultad de Ciencias Astronómicas y Geofísicas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/82627enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/200811583info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:15:31Zoai:sedici.unlp.edu.ar:10915/82627Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:15:31.446SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Open clusters in the Third Galactic Quadrant : III. Alleged binary clusters |
title |
Open clusters in the Third Galactic Quadrant : III. Alleged binary clusters |
spellingShingle |
Open clusters in the Third Galactic Quadrant : III. Alleged binary clusters Vázquez, Rubén Ángel Ciencias Astronómicas Galaxy: structure Open clusters and associations: general |
title_short |
Open clusters in the Third Galactic Quadrant : III. Alleged binary clusters |
title_full |
Open clusters in the Third Galactic Quadrant : III. Alleged binary clusters |
title_fullStr |
Open clusters in the Third Galactic Quadrant : III. Alleged binary clusters |
title_full_unstemmed |
Open clusters in the Third Galactic Quadrant : III. Alleged binary clusters |
title_sort |
Open clusters in the Third Galactic Quadrant : III. Alleged binary clusters |
dc.creator.none.fl_str_mv |
Vázquez, Rubén Ángel Moitinho, A. Carraro, G. Dias, W. S. |
author |
Vázquez, Rubén Ángel |
author_facet |
Vázquez, Rubén Ángel Moitinho, A. Carraro, G. Dias, W. S. |
author_role |
author |
author2 |
Moitinho, A. Carraro, G. Dias, W. S. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Galaxy: structure Open clusters and associations: general |
topic |
Ciencias Astronómicas Galaxy: structure Open clusters and associations: general |
dc.description.none.fl_txt_mv |
Aims: We aim to determine accurate distances and ages of eight open clusters in order to: (1) assess their possible binarity (2) provide probes to trace the structure of the Third Galactic Quadrant. Methods: Cluster reddenings, distances, ages and metallicities are derived from ZAMS and isochrone fits in UBVRI photometric diagrams. Field contamination is reduced by restricting analysis to stars within the cluster limits derived from star counts. Further membership control is done by requiring that stars have consistent positions in several diagrams and by using published spectral types. Results: The derived distances, ages and metallicities have shown that none of the analysed clusters compose binary/double systems. Of the four candidate pairs, only NGC 2383/NGC 2384 are close to each other, but have different metallicities and ages. Ruprecht 72 and Ruprecht 158 are not clusters but fluctuations of the field stellar density. Haffner 18 is found to be the superposition of two stellar groups at different distances: Haffner 18(1) at 4.5 kpc and Haffner 18(2) between 9.5 and 11.4 kpc from the Sun. The derived distances and ages have been used to situate the clusters in the Galactic context. In particular, young stellar groups trace spiral structure at large Galactocentric radii. At least two clusters formed during the last few 108 yr in an interstellar medium with less than solar abundances. Conclusions: In contrast with the LMC, double clusters are apparently rare, or even non existent, in the undisturbed environment of the Third Galactic Quadrant. This leaves open the question of whether binary clusters form more easily toward denser and more violent regions of the Milky Way such as the inner Galaxy. Facultad de Ciencias Astronómicas y Geofísicas |
description |
Aims: We aim to determine accurate distances and ages of eight open clusters in order to: (1) assess their possible binarity (2) provide probes to trace the structure of the Third Galactic Quadrant. Methods: Cluster reddenings, distances, ages and metallicities are derived from ZAMS and isochrone fits in UBVRI photometric diagrams. Field contamination is reduced by restricting analysis to stars within the cluster limits derived from star counts. Further membership control is done by requiring that stars have consistent positions in several diagrams and by using published spectral types. Results: The derived distances, ages and metallicities have shown that none of the analysed clusters compose binary/double systems. Of the four candidate pairs, only NGC 2383/NGC 2384 are close to each other, but have different metallicities and ages. Ruprecht 72 and Ruprecht 158 are not clusters but fluctuations of the field stellar density. Haffner 18 is found to be the superposition of two stellar groups at different distances: Haffner 18(1) at 4.5 kpc and Haffner 18(2) between 9.5 and 11.4 kpc from the Sun. The derived distances and ages have been used to situate the clusters in the Galactic context. In particular, young stellar groups trace spiral structure at large Galactocentric radii. At least two clusters formed during the last few 108 yr in an interstellar medium with less than solar abundances. Conclusions: In contrast with the LMC, double clusters are apparently rare, or even non existent, in the undisturbed environment of the Third Galactic Quadrant. This leaves open the question of whether binary clusters form more easily toward denser and more violent regions of the Milky Way such as the inner Galaxy. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/82627 |
url |
http://sedici.unlp.edu.ar/handle/10915/82627 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0004-6361 info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/200811583 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616027105656832 |
score |
13.070432 |