Measuring the component of a divide and conquer skeleton

Autores
Printista, Alicia Marcela; Saez, Fernando
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Current performance prediction analytical models try to characterize the performance behavior of actual machines through a small set of parameters. Due to different factors, the predicted times suffer substantial deviations. A natural approach is to associate a different proportionality constant with each basic block of computation. In particular, the paper deals with a skeleton designed for parallel divide and conquer algorithms that provide hypercubical communications among processes. Our proposal is to introduce different kinds of components to the analytical model by associating a performance constant for each conceptual block of a skeleton. The trace files obtained from the execution of the resulting code using the programming skeleton are used by lineal regression techniques giving us, among other information, the values of the parameters of those blocks. The accuracy of the proposed model is analyzed by means of two instances of skeleton.
Facultad de Informática
Materia
Ciencias Informáticas
timing model
skeleton
multivariate analysis
Parallel
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/9647

id SEDICI_b34b0de3f9e523580f6ce3ee4c565b9a
oai_identifier_str oai:sedici.unlp.edu.ar:10915/9647
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Measuring the component of a divide and conquer skeletonPrintista, Alicia MarcelaSaez, FernandoCiencias Informáticastiming modelskeletonmultivariate analysisParallelCurrent performance prediction analytical models try to characterize the performance behavior of actual machines through a small set of parameters. Due to different factors, the predicted times suffer substantial deviations. A natural approach is to associate a different proportionality constant with each basic block of computation. In particular, the paper deals with a skeleton designed for parallel divide and conquer algorithms that provide hypercubical communications among processes. Our proposal is to introduce different kinds of components to the analytical model by associating a performance constant for each conceptual block of a skeleton. The trace files obtained from the execution of the resulting code using the programming skeleton are used by lineal regression techniques giving us, among other information, the values of the parameters of those blocks. The accuracy of the proposed model is analyzed by means of two instances of skeleton.Facultad de Informática2009-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf27-31http://sedici.unlp.edu.ar/handle/10915/9647enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr09-5.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9647Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:45.202SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Measuring the component of a divide and conquer skeleton
title Measuring the component of a divide and conquer skeleton
spellingShingle Measuring the component of a divide and conquer skeleton
Printista, Alicia Marcela
Ciencias Informáticas
timing model
skeleton
multivariate analysis
Parallel
title_short Measuring the component of a divide and conquer skeleton
title_full Measuring the component of a divide and conquer skeleton
title_fullStr Measuring the component of a divide and conquer skeleton
title_full_unstemmed Measuring the component of a divide and conquer skeleton
title_sort Measuring the component of a divide and conquer skeleton
dc.creator.none.fl_str_mv Printista, Alicia Marcela
Saez, Fernando
author Printista, Alicia Marcela
author_facet Printista, Alicia Marcela
Saez, Fernando
author_role author
author2 Saez, Fernando
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
timing model
skeleton
multivariate analysis
Parallel
topic Ciencias Informáticas
timing model
skeleton
multivariate analysis
Parallel
dc.description.none.fl_txt_mv Current performance prediction analytical models try to characterize the performance behavior of actual machines through a small set of parameters. Due to different factors, the predicted times suffer substantial deviations. A natural approach is to associate a different proportionality constant with each basic block of computation. In particular, the paper deals with a skeleton designed for parallel divide and conquer algorithms that provide hypercubical communications among processes. Our proposal is to introduce different kinds of components to the analytical model by associating a performance constant for each conceptual block of a skeleton. The trace files obtained from the execution of the resulting code using the programming skeleton are used by lineal regression techniques giving us, among other information, the values of the parameters of those blocks. The accuracy of the proposed model is analyzed by means of two instances of skeleton.
Facultad de Informática
description Current performance prediction analytical models try to characterize the performance behavior of actual machines through a small set of parameters. Due to different factors, the predicted times suffer substantial deviations. A natural approach is to associate a different proportionality constant with each basic block of computation. In particular, the paper deals with a skeleton designed for parallel divide and conquer algorithms that provide hypercubical communications among processes. Our proposal is to introduce different kinds of components to the analytical model by associating a performance constant for each conceptual block of a skeleton. The trace files obtained from the execution of the resulting code using the programming skeleton are used by lineal regression techniques giving us, among other information, the values of the parameters of those blocks. The accuracy of the proposed model is analyzed by means of two instances of skeleton.
publishDate 2009
dc.date.none.fl_str_mv 2009-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/9647
url http://sedici.unlp.edu.ar/handle/10915/9647
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr09-5.pdf
info:eu-repo/semantics/altIdentifier/issn/1666-6038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/3.0/
Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)
dc.format.none.fl_str_mv application/pdf
27-31
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615758786592768
score 13.070432