Measuring the component of a divide and conquer skeleton
- Autores
- Printista, Alicia Marcela; Saez, Fernando
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Current performance prediction analytical models try to characterize the performance behavior of actual machines through a small set of parameters. Due to different factors, the predicted times suffer substantial deviations. A natural approach is to associate a different proportionality constant with each basic block of computation. In particular, the paper deals with a skeleton designed for parallel divide and conquer algorithms that provide hypercubical communications among processes. Our proposal is to introduce different kinds of components to the analytical model by associating a performance constant for each conceptual block of a skeleton. The trace files obtained from the execution of the resulting code using the programming skeleton are used by lineal regression techniques giving us, among other information, the values of the parameters of those blocks. The accuracy of the proposed model is analyzed by means of two instances of skeleton.
Facultad de Informática - Materia
-
Ciencias Informáticas
timing model
skeleton
multivariate analysis
Parallel - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9647
Ver los metadatos del registro completo
id |
SEDICI_b34b0de3f9e523580f6ce3ee4c565b9a |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9647 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Measuring the component of a divide and conquer skeletonPrintista, Alicia MarcelaSaez, FernandoCiencias Informáticastiming modelskeletonmultivariate analysisParallelCurrent performance prediction analytical models try to characterize the performance behavior of actual machines through a small set of parameters. Due to different factors, the predicted times suffer substantial deviations. A natural approach is to associate a different proportionality constant with each basic block of computation. In particular, the paper deals with a skeleton designed for parallel divide and conquer algorithms that provide hypercubical communications among processes. Our proposal is to introduce different kinds of components to the analytical model by associating a performance constant for each conceptual block of a skeleton. The trace files obtained from the execution of the resulting code using the programming skeleton are used by lineal regression techniques giving us, among other information, the values of the parameters of those blocks. The accuracy of the proposed model is analyzed by means of two instances of skeleton.Facultad de Informática2009-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf27-31http://sedici.unlp.edu.ar/handle/10915/9647enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr09-5.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:44Zoai:sedici.unlp.edu.ar:10915/9647Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:45.202SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Measuring the component of a divide and conquer skeleton |
title |
Measuring the component of a divide and conquer skeleton |
spellingShingle |
Measuring the component of a divide and conquer skeleton Printista, Alicia Marcela Ciencias Informáticas timing model skeleton multivariate analysis Parallel |
title_short |
Measuring the component of a divide and conquer skeleton |
title_full |
Measuring the component of a divide and conquer skeleton |
title_fullStr |
Measuring the component of a divide and conquer skeleton |
title_full_unstemmed |
Measuring the component of a divide and conquer skeleton |
title_sort |
Measuring the component of a divide and conquer skeleton |
dc.creator.none.fl_str_mv |
Printista, Alicia Marcela Saez, Fernando |
author |
Printista, Alicia Marcela |
author_facet |
Printista, Alicia Marcela Saez, Fernando |
author_role |
author |
author2 |
Saez, Fernando |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas timing model skeleton multivariate analysis Parallel |
topic |
Ciencias Informáticas timing model skeleton multivariate analysis Parallel |
dc.description.none.fl_txt_mv |
Current performance prediction analytical models try to characterize the performance behavior of actual machines through a small set of parameters. Due to different factors, the predicted times suffer substantial deviations. A natural approach is to associate a different proportionality constant with each basic block of computation. In particular, the paper deals with a skeleton designed for parallel divide and conquer algorithms that provide hypercubical communications among processes. Our proposal is to introduce different kinds of components to the analytical model by associating a performance constant for each conceptual block of a skeleton. The trace files obtained from the execution of the resulting code using the programming skeleton are used by lineal regression techniques giving us, among other information, the values of the parameters of those blocks. The accuracy of the proposed model is analyzed by means of two instances of skeleton. Facultad de Informática |
description |
Current performance prediction analytical models try to characterize the performance behavior of actual machines through a small set of parameters. Due to different factors, the predicted times suffer substantial deviations. A natural approach is to associate a different proportionality constant with each basic block of computation. In particular, the paper deals with a skeleton designed for parallel divide and conquer algorithms that provide hypercubical communications among processes. Our proposal is to introduce different kinds of components to the analytical model by associating a performance constant for each conceptual block of a skeleton. The trace files obtained from the execution of the resulting code using the programming skeleton are used by lineal regression techniques giving us, among other information, the values of the parameters of those blocks. The accuracy of the proposed model is analyzed by means of two instances of skeleton. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9647 |
url |
http://sedici.unlp.edu.ar/handle/10915/9647 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr09-5.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 27-31 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615758786592768 |
score |
13.070432 |