The Impact of Social Curiosity on Information Spreading on Networks
- Autores
- Vega Oliveros, Didier A.; Berton, Lilian; Vazquez, Federico; Rodrigues, Francisco A.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Most information spreading models consider that all individuals are identical psychologically. They ignore, for instance, the curiosity level of people, which may indicate that they can be influenced to seek for information given their interest. For example, the game Pokemon GO spread rapidly because of the aroused curiosity among users. This paper proposes an information propagation model considering the curiosity level of each individual, which is a dynamical parameter that evolves over time. We evaluate the efficiency of our model in contrast to traditional information propagation models, like SIR or IC, and perform analysis on different types of artificial and real-world networks, like Google+, Facebook, and the United States roads map. We present a mean-field approach that reproduces with a good accuracy the evolution of macroscopic quantities, such as the density of stiflers, for the system's behavior with the curiosity. We also obtain an analytical solution of the mean-field equations that allows to predicts a transition from a phase where the information remains confined to a small number of users to a phase where it spreads over a large fraction of the population. The results indicate that the curiosity increases the information spreading in all networks as compared with the spreading without curiosity, and that this increase is larger in spatial networks than in social networks. When the curiosity is taken into account, the maximum number of informed individuals is reached close to the transition point. Since curious people are more open to a new product, concepts, and ideas, this is an important factor to be considered in propagation modeling. Our results contribute to the understanding of the interplay between diffusion process and dynamical heterogeneous transmission in social networks.
Instituto de Física de Líquidos y Sistemas Biológicos - Materia
-
Ciencias Exactas
Curiosity
Information propagation
Spatial networks
Social networks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/124120
Ver los metadatos del registro completo
id |
SEDICI_b32aac47ac52c159cbea4a5d5f1e937b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/124120 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
The Impact of Social Curiosity on Information Spreading on NetworksVega Oliveros, Didier A.Berton, LilianVazquez, FedericoRodrigues, Francisco A.Ciencias ExactasCuriosityInformation propagationSpatial networksSocial networksMost information spreading models consider that all individuals are identical psychologically. They ignore, for instance, the curiosity level of people, which may indicate that they can be influenced to seek for information given their interest. For example, the game Pokemon GO spread rapidly because of the aroused curiosity among users. This paper proposes an information propagation model considering the curiosity level of each individual, which is a dynamical parameter that evolves over time. We evaluate the efficiency of our model in contrast to traditional information propagation models, like SIR or IC, and perform analysis on different types of artificial and real-world networks, like Google+, Facebook, and the United States roads map. We present a mean-field approach that reproduces with a good accuracy the evolution of macroscopic quantities, such as the density of stiflers, for the system's behavior with the curiosity. We also obtain an analytical solution of the mean-field equations that allows to predicts a transition from a phase where the information remains confined to a small number of users to a phase where it spreads over a large fraction of the population. The results indicate that the curiosity increases the information spreading in all networks as compared with the spreading without curiosity, and that this increase is larger in spatial networks than in social networks. When the curiosity is taken into account, the maximum number of informed individuals is reached close to the transition point. Since curious people are more open to a new product, concepts, and ideas, this is an important factor to be considered in propagation modeling. Our results contribute to the understanding of the interplay between diffusion process and dynamical heterogeneous transmission in social networks.Instituto de Física de Líquidos y Sistemas Biológicos2017info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf459-466http://sedici.unlp.edu.ar/handle/10915/124120enginfo:eu-repo/semantics/altIdentifier/isbn/978-1-4503-4993-2info:eu-repo/semantics/altIdentifier/arxiv/1706.07972info:eu-repo/semantics/altIdentifier/doi/10.1145/3110025.3110039info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:01:34Zoai:sedici.unlp.edu.ar:10915/124120Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:01:34.264SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
The Impact of Social Curiosity on Information Spreading on Networks |
title |
The Impact of Social Curiosity on Information Spreading on Networks |
spellingShingle |
The Impact of Social Curiosity on Information Spreading on Networks Vega Oliveros, Didier A. Ciencias Exactas Curiosity Information propagation Spatial networks Social networks |
title_short |
The Impact of Social Curiosity on Information Spreading on Networks |
title_full |
The Impact of Social Curiosity on Information Spreading on Networks |
title_fullStr |
The Impact of Social Curiosity on Information Spreading on Networks |
title_full_unstemmed |
The Impact of Social Curiosity on Information Spreading on Networks |
title_sort |
The Impact of Social Curiosity on Information Spreading on Networks |
dc.creator.none.fl_str_mv |
Vega Oliveros, Didier A. Berton, Lilian Vazquez, Federico Rodrigues, Francisco A. |
author |
Vega Oliveros, Didier A. |
author_facet |
Vega Oliveros, Didier A. Berton, Lilian Vazquez, Federico Rodrigues, Francisco A. |
author_role |
author |
author2 |
Berton, Lilian Vazquez, Federico Rodrigues, Francisco A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Curiosity Information propagation Spatial networks Social networks |
topic |
Ciencias Exactas Curiosity Information propagation Spatial networks Social networks |
dc.description.none.fl_txt_mv |
Most information spreading models consider that all individuals are identical psychologically. They ignore, for instance, the curiosity level of people, which may indicate that they can be influenced to seek for information given their interest. For example, the game Pokemon GO spread rapidly because of the aroused curiosity among users. This paper proposes an information propagation model considering the curiosity level of each individual, which is a dynamical parameter that evolves over time. We evaluate the efficiency of our model in contrast to traditional information propagation models, like SIR or IC, and perform analysis on different types of artificial and real-world networks, like Google+, Facebook, and the United States roads map. We present a mean-field approach that reproduces with a good accuracy the evolution of macroscopic quantities, such as the density of stiflers, for the system's behavior with the curiosity. We also obtain an analytical solution of the mean-field equations that allows to predicts a transition from a phase where the information remains confined to a small number of users to a phase where it spreads over a large fraction of the population. The results indicate that the curiosity increases the information spreading in all networks as compared with the spreading without curiosity, and that this increase is larger in spatial networks than in social networks. When the curiosity is taken into account, the maximum number of informed individuals is reached close to the transition point. Since curious people are more open to a new product, concepts, and ideas, this is an important factor to be considered in propagation modeling. Our results contribute to the understanding of the interplay between diffusion process and dynamical heterogeneous transmission in social networks. Instituto de Física de Líquidos y Sistemas Biológicos |
description |
Most information spreading models consider that all individuals are identical psychologically. They ignore, for instance, the curiosity level of people, which may indicate that they can be influenced to seek for information given their interest. For example, the game Pokemon GO spread rapidly because of the aroused curiosity among users. This paper proposes an information propagation model considering the curiosity level of each individual, which is a dynamical parameter that evolves over time. We evaluate the efficiency of our model in contrast to traditional information propagation models, like SIR or IC, and perform analysis on different types of artificial and real-world networks, like Google+, Facebook, and the United States roads map. We present a mean-field approach that reproduces with a good accuracy the evolution of macroscopic quantities, such as the density of stiflers, for the system's behavior with the curiosity. We also obtain an analytical solution of the mean-field equations that allows to predicts a transition from a phase where the information remains confined to a small number of users to a phase where it spreads over a large fraction of the population. The results indicate that the curiosity increases the information spreading in all networks as compared with the spreading without curiosity, and that this increase is larger in spatial networks than in social networks. When the curiosity is taken into account, the maximum number of informed individuals is reached close to the transition point. Since curious people are more open to a new product, concepts, and ideas, this is an important factor to be considered in propagation modeling. Our results contribute to the understanding of the interplay between diffusion process and dynamical heterogeneous transmission in social networks. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/124120 |
url |
http://sedici.unlp.edu.ar/handle/10915/124120 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-1-4503-4993-2 info:eu-repo/semantics/altIdentifier/arxiv/1706.07972 info:eu-repo/semantics/altIdentifier/doi/10.1145/3110025.3110039 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 459-466 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260512040026112 |
score |
13.13397 |