Probabilistic Multicast Trees
- Autores
- Wolff, Francis G.; McIntyre, David R.; Johnston, David A.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Delivery of the same data content to many clients simultaneously over the Internet continues to be a challenging problem. Multicasting using a single tree structure for data distribution has been shown to be an effective methodology for distribution of data. Using the tree structure to distribute data relieves the source node from the burden of trying to unicast to each client and is efficient because the data delivery burden is distributed over all the participating client nodes. Using multiple tree multicasting further distributes the transmission burden over more participating client nodes and it improves the efficiency of the data distribution. Multiple multicast trees can also be used to manage dynamic behavior of the underlying network. We introduce a methodology which improves data delivery latency and efficiency upon current multiple tree multicast methods. This methodology incorporates a feedback mechanism, randomness and a weighted tree selection mechanism to determine the most efficient multicast tree for multicasting
Facultad de Informática - Materia
-
Informática
multicast
distribution
Trees - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9709
Ver los metadatos del registro completo
id |
SEDICI_b104b9814dc5d1c1a028281792718d5c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9709 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Probabilistic Multicast TreesWolff, Francis G.McIntyre, David R.Johnston, David A.InformáticamulticastdistributionTreesDelivery of the same data content to many clients simultaneously over the Internet continues to be a challenging problem. Multicasting using a single tree structure for data distribution has been shown to be an effective methodology for distribution of data. Using the tree structure to distribute data relieves the source node from the burden of trying to unicast to each client and is efficient because the data delivery burden is distributed over all the participating client nodes. Using multiple tree multicasting further distributes the transmission burden over more participating client nodes and it improves the efficiency of the data distribution. Multiple multicast trees can also be used to manage dynamic behavior of the underlying network. We introduce a methodology which improves data delivery latency and efficiency upon current multiple tree multicast methods. This methodology incorporates a feedback mechanism, randomness and a weighted tree selection mechanism to determine the most efficient multicast tree for multicastingFacultad de Informática2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf16-21http://sedici.unlp.edu.ar/handle/10915/9709enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr12-3.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:48Zoai:sedici.unlp.edu.ar:10915/9709Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:49.042SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Probabilistic Multicast Trees |
title |
Probabilistic Multicast Trees |
spellingShingle |
Probabilistic Multicast Trees Wolff, Francis G. Informática multicast distribution Trees |
title_short |
Probabilistic Multicast Trees |
title_full |
Probabilistic Multicast Trees |
title_fullStr |
Probabilistic Multicast Trees |
title_full_unstemmed |
Probabilistic Multicast Trees |
title_sort |
Probabilistic Multicast Trees |
dc.creator.none.fl_str_mv |
Wolff, Francis G. McIntyre, David R. Johnston, David A. |
author |
Wolff, Francis G. |
author_facet |
Wolff, Francis G. McIntyre, David R. Johnston, David A. |
author_role |
author |
author2 |
McIntyre, David R. Johnston, David A. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Informática multicast distribution Trees |
topic |
Informática multicast distribution Trees |
dc.description.none.fl_txt_mv |
Delivery of the same data content to many clients simultaneously over the Internet continues to be a challenging problem. Multicasting using a single tree structure for data distribution has been shown to be an effective methodology for distribution of data. Using the tree structure to distribute data relieves the source node from the burden of trying to unicast to each client and is efficient because the data delivery burden is distributed over all the participating client nodes. Using multiple tree multicasting further distributes the transmission burden over more participating client nodes and it improves the efficiency of the data distribution. Multiple multicast trees can also be used to manage dynamic behavior of the underlying network. We introduce a methodology which improves data delivery latency and efficiency upon current multiple tree multicast methods. This methodology incorporates a feedback mechanism, randomness and a weighted tree selection mechanism to determine the most efficient multicast tree for multicasting Facultad de Informática |
description |
Delivery of the same data content to many clients simultaneously over the Internet continues to be a challenging problem. Multicasting using a single tree structure for data distribution has been shown to be an effective methodology for distribution of data. Using the tree structure to distribute data relieves the source node from the burden of trying to unicast to each client and is efficient because the data delivery burden is distributed over all the participating client nodes. Using multiple tree multicasting further distributes the transmission burden over more participating client nodes and it improves the efficiency of the data distribution. Multiple multicast trees can also be used to manage dynamic behavior of the underlying network. We introduce a methodology which improves data delivery latency and efficiency upon current multiple tree multicast methods. This methodology incorporates a feedback mechanism, randomness and a weighted tree selection mechanism to determine the most efficient multicast tree for multicasting |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9709 |
url |
http://sedici.unlp.edu.ar/handle/10915/9709 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Apr12-3.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 16-21 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615758865235968 |
score |
13.070432 |