CNN-LSTM Architecture for Action Recognition in Videos
- Autores
- Orozco, Carlos Ismael; Buemi, María E.; Berlles, Julio Jacobo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Action recognition in videos is currently a topic of interest in the area of computer vision, due to potential applications such as: multimedia indexing, surveillance in public spaces, among others. In this paper we propose a CNN{LSTM architecture. First, a pre-trained VGG16 convolutional neuronal networks extracts the features of the input video. Then, a LSTM classi es the video in a particular class. To carry out the training and the test, we used the UCF-11 dataset. Evaluate the performance of our system using the evaluation metric in accuracy. We apply LOOCV with k = 25, we obtain ~ 98% and ~ 91% for training and test respectively.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Action recognition
Convolutional neural network
Long short-term memory
UCF-11 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/89144
Ver los metadatos del registro completo
id |
SEDICI_ae4097015fce68b6d6cb5ccb6b2cf1dc |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/89144 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
CNN-LSTM Architecture for Action Recognition in VideosOrozco, Carlos IsmaelBuemi, María E.Berlles, Julio JacoboCiencias InformáticasAction recognitionConvolutional neural networkLong short-term memoryUCF-11Action recognition in videos is currently a topic of interest in the area of computer vision, due to potential applications such as: multimedia indexing, surveillance in public spaces, among others. In this paper we propose a CNN{LSTM architecture. First, a pre-trained VGG16 convolutional neuronal networks extracts the features of the input video. Then, a LSTM classi es the video in a particular class. To carry out the training and the test, we used the UCF-11 dataset. Evaluate the performance of our system using the evaluation metric in accuracy. We apply LOOCV with k = 25, we obtain ~ 98% and ~ 91% for training and test respectively.Sociedad Argentina de Informática e Investigación Operativa2019-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf7-12http://sedici.unlp.edu.ar/handle/10915/89144enginfo:eu-repo/semantics/altIdentifier/issn/2683-8990info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:18:18Zoai:sedici.unlp.edu.ar:10915/89144Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:18:19.025SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
CNN-LSTM Architecture for Action Recognition in Videos |
title |
CNN-LSTM Architecture for Action Recognition in Videos |
spellingShingle |
CNN-LSTM Architecture for Action Recognition in Videos Orozco, Carlos Ismael Ciencias Informáticas Action recognition Convolutional neural network Long short-term memory UCF-11 |
title_short |
CNN-LSTM Architecture for Action Recognition in Videos |
title_full |
CNN-LSTM Architecture for Action Recognition in Videos |
title_fullStr |
CNN-LSTM Architecture for Action Recognition in Videos |
title_full_unstemmed |
CNN-LSTM Architecture for Action Recognition in Videos |
title_sort |
CNN-LSTM Architecture for Action Recognition in Videos |
dc.creator.none.fl_str_mv |
Orozco, Carlos Ismael Buemi, María E. Berlles, Julio Jacobo |
author |
Orozco, Carlos Ismael |
author_facet |
Orozco, Carlos Ismael Buemi, María E. Berlles, Julio Jacobo |
author_role |
author |
author2 |
Buemi, María E. Berlles, Julio Jacobo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Action recognition Convolutional neural network Long short-term memory UCF-11 |
topic |
Ciencias Informáticas Action recognition Convolutional neural network Long short-term memory UCF-11 |
dc.description.none.fl_txt_mv |
Action recognition in videos is currently a topic of interest in the area of computer vision, due to potential applications such as: multimedia indexing, surveillance in public spaces, among others. In this paper we propose a CNN{LSTM architecture. First, a pre-trained VGG16 convolutional neuronal networks extracts the features of the input video. Then, a LSTM classi es the video in a particular class. To carry out the training and the test, we used the UCF-11 dataset. Evaluate the performance of our system using the evaluation metric in accuracy. We apply LOOCV with k = 25, we obtain ~ 98% and ~ 91% for training and test respectively. Sociedad Argentina de Informática e Investigación Operativa |
description |
Action recognition in videos is currently a topic of interest in the area of computer vision, due to potential applications such as: multimedia indexing, surveillance in public spaces, among others. In this paper we propose a CNN{LSTM architecture. First, a pre-trained VGG16 convolutional neuronal networks extracts the features of the input video. Then, a LSTM classi es the video in a particular class. To carry out the training and the test, we used the UCF-11 dataset. Evaluate the performance of our system using the evaluation metric in accuracy. We apply LOOCV with k = 25, we obtain ~ 98% and ~ 91% for training and test respectively. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/89144 |
url |
http://sedici.unlp.edu.ar/handle/10915/89144 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2683-8990 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 7-12 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616056765677568 |
score |
13.069144 |