Scanning Tunneling Microscopy Observation of Sulfur Electrodeposits on Graphite Single Crystals

Autores
Zubimendi, J. L.; Salvarezza, Roberto Carlos; Vázquez, L.; Arvia, Alejandro Jorge
Año de publicación
1996
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The early stages of sulfur deposit growth on highly oriented pyrolytic graphite (HOPG) caused by HS- electrooxidation in a neutral buffered solution have been investigated using electrochemical techniques and ex situ scanning tunneling microscopy (STM). In this system sulfur deposition has been observed at −0.80 V vs SCE, i.e. a potential more negative than the reversible potential for the HS-/S reaction. The charge density was equivalent to an average surface coverage by sulfur atoms θ ≅ 1/3 monolayer (ML). Ex situ atomic resolution STM images of the layer electrodeposited at −0.8 V show sulfur submonolayers and large uncovered HOPG domains. Sulfur electroadsorption layers appear as a diluted (√3×√3) surface phase with S atoms atop C atoms of the graphite hexagons and the S−S interatomic distance d(S−S) = 0.42 nm. Further addition of S atoms to a diluted sulfur phase resulted in the formation of sulfur trimers with three S atoms placed atop the three C atoms constituting the graphite hexagons. In this case d(S−S) = 0.24 nm. Neighbor trimers originate a filled hexagonal lattice. Ex situ STM images of overpotential deposited sulfur also show submonolayer sulfur domains with a second hexagonal (√3×√3)R30° sulfur lattice with d(S−S) = 0.42 nm. A further increase of θ produces either a new honeycomb lattice with d(S−S) = 0.24 nm or a rectangular lattice formed by rows of S atoms with d(S−S) = 0.21 nm and row separation d(S−S) = 0.37 nm.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
Materia
Ciencias Exactas
Química
highly oriented pyrolytic graphite
scanning tunneling microscopy
graphite single crystals
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/126521

id SEDICI_ac1f821c7324baa570b62398d739a739
oai_identifier_str oai:sedici.unlp.edu.ar:10915/126521
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Scanning Tunneling Microscopy Observation of Sulfur Electrodeposits on Graphite Single CrystalsZubimendi, J. L.Salvarezza, Roberto CarlosVázquez, L.Arvia, Alejandro JorgeCiencias ExactasQuímicahighly oriented pyrolytic graphitescanning tunneling microscopygraphite single crystalsThe early stages of sulfur deposit growth on highly oriented pyrolytic graphite (HOPG) caused by HS- electrooxidation in a neutral buffered solution have been investigated using electrochemical techniques and ex situ scanning tunneling microscopy (STM). In this system sulfur deposition has been observed at −0.80 V vs SCE, i.e. a potential more negative than the reversible potential for the HS-/S reaction. The charge density was equivalent to an average surface coverage by sulfur atoms θ ≅ 1/3 monolayer (ML). Ex situ atomic resolution STM images of the layer electrodeposited at −0.8 V show sulfur submonolayers and large uncovered HOPG domains. Sulfur electroadsorption layers appear as a diluted (√3×√3) surface phase with S atoms atop C atoms of the graphite hexagons and the S−S interatomic distance d(S−S) = 0.42 nm. Further addition of S atoms to a diluted sulfur phase resulted in the formation of sulfur trimers with three S atoms placed atop the three C atoms constituting the graphite hexagons. In this case d(S−S) = 0.24 nm. Neighbor trimers originate a filled hexagonal lattice. Ex situ STM images of overpotential deposited sulfur also show submonolayer sulfur domains with a second hexagonal (√3×√3)R30° sulfur lattice with d(S−S) = 0.42 nm. A further increase of θ produces either a new honeycomb lattice with d(S−S) = 0.24 nm or a rectangular lattice formed by rows of S atoms with d(S−S) = 0.21 nm and row separation d(S−S) = 0.37 nm.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas1996info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf2-11http://sedici.unlp.edu.ar/handle/10915/126521spainfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/pdf/10.1021/la940759m?rand=8l3p6czdinfo:eu-repo/semantics/altIdentifier/issn/0743-7463info:eu-repo/semantics/altIdentifier/issn/1520-5827info:eu-repo/semantics/altIdentifier/doi/10.1021/la940759minfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:34Zoai:sedici.unlp.edu.ar:10915/126521Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:34.721SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Scanning Tunneling Microscopy Observation of Sulfur Electrodeposits on Graphite Single Crystals
title Scanning Tunneling Microscopy Observation of Sulfur Electrodeposits on Graphite Single Crystals
spellingShingle Scanning Tunneling Microscopy Observation of Sulfur Electrodeposits on Graphite Single Crystals
Zubimendi, J. L.
Ciencias Exactas
Química
highly oriented pyrolytic graphite
scanning tunneling microscopy
graphite single crystals
title_short Scanning Tunneling Microscopy Observation of Sulfur Electrodeposits on Graphite Single Crystals
title_full Scanning Tunneling Microscopy Observation of Sulfur Electrodeposits on Graphite Single Crystals
title_fullStr Scanning Tunneling Microscopy Observation of Sulfur Electrodeposits on Graphite Single Crystals
title_full_unstemmed Scanning Tunneling Microscopy Observation of Sulfur Electrodeposits on Graphite Single Crystals
title_sort Scanning Tunneling Microscopy Observation of Sulfur Electrodeposits on Graphite Single Crystals
dc.creator.none.fl_str_mv Zubimendi, J. L.
Salvarezza, Roberto Carlos
Vázquez, L.
Arvia, Alejandro Jorge
author Zubimendi, J. L.
author_facet Zubimendi, J. L.
Salvarezza, Roberto Carlos
Vázquez, L.
Arvia, Alejandro Jorge
author_role author
author2 Salvarezza, Roberto Carlos
Vázquez, L.
Arvia, Alejandro Jorge
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Exactas
Química
highly oriented pyrolytic graphite
scanning tunneling microscopy
graphite single crystals
topic Ciencias Exactas
Química
highly oriented pyrolytic graphite
scanning tunneling microscopy
graphite single crystals
dc.description.none.fl_txt_mv The early stages of sulfur deposit growth on highly oriented pyrolytic graphite (HOPG) caused by HS- electrooxidation in a neutral buffered solution have been investigated using electrochemical techniques and ex situ scanning tunneling microscopy (STM). In this system sulfur deposition has been observed at −0.80 V vs SCE, i.e. a potential more negative than the reversible potential for the HS-/S reaction. The charge density was equivalent to an average surface coverage by sulfur atoms θ ≅ 1/3 monolayer (ML). Ex situ atomic resolution STM images of the layer electrodeposited at −0.8 V show sulfur submonolayers and large uncovered HOPG domains. Sulfur electroadsorption layers appear as a diluted (√3×√3) surface phase with S atoms atop C atoms of the graphite hexagons and the S−S interatomic distance d(S−S) = 0.42 nm. Further addition of S atoms to a diluted sulfur phase resulted in the formation of sulfur trimers with three S atoms placed atop the three C atoms constituting the graphite hexagons. In this case d(S−S) = 0.24 nm. Neighbor trimers originate a filled hexagonal lattice. Ex situ STM images of overpotential deposited sulfur also show submonolayer sulfur domains with a second hexagonal (√3×√3)R30° sulfur lattice with d(S−S) = 0.42 nm. A further increase of θ produces either a new honeycomb lattice with d(S−S) = 0.24 nm or a rectangular lattice formed by rows of S atoms with d(S−S) = 0.21 nm and row separation d(S−S) = 0.37 nm.
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas
description The early stages of sulfur deposit growth on highly oriented pyrolytic graphite (HOPG) caused by HS- electrooxidation in a neutral buffered solution have been investigated using electrochemical techniques and ex situ scanning tunneling microscopy (STM). In this system sulfur deposition has been observed at −0.80 V vs SCE, i.e. a potential more negative than the reversible potential for the HS-/S reaction. The charge density was equivalent to an average surface coverage by sulfur atoms θ ≅ 1/3 monolayer (ML). Ex situ atomic resolution STM images of the layer electrodeposited at −0.8 V show sulfur submonolayers and large uncovered HOPG domains. Sulfur electroadsorption layers appear as a diluted (√3×√3) surface phase with S atoms atop C atoms of the graphite hexagons and the S−S interatomic distance d(S−S) = 0.42 nm. Further addition of S atoms to a diluted sulfur phase resulted in the formation of sulfur trimers with three S atoms placed atop the three C atoms constituting the graphite hexagons. In this case d(S−S) = 0.24 nm. Neighbor trimers originate a filled hexagonal lattice. Ex situ STM images of overpotential deposited sulfur also show submonolayer sulfur domains with a second hexagonal (√3×√3)R30° sulfur lattice with d(S−S) = 0.42 nm. A further increase of θ produces either a new honeycomb lattice with d(S−S) = 0.24 nm or a rectangular lattice formed by rows of S atoms with d(S−S) = 0.21 nm and row separation d(S−S) = 0.37 nm.
publishDate 1996
dc.date.none.fl_str_mv 1996
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/126521
url http://sedici.unlp.edu.ar/handle/10915/126521
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/pdf/10.1021/la940759m?rand=8l3p6czd
info:eu-repo/semantics/altIdentifier/issn/0743-7463
info:eu-repo/semantics/altIdentifier/issn/1520-5827
info:eu-repo/semantics/altIdentifier/doi/10.1021/la940759m
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
2-11
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260524087115776
score 13.13397