Embedding abduction in nonmonotonic theories

Autores
Delrieux, Claudio
Año de publicación
2002
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
An important ampliative inference schema that is commonly used is abduction. Abduction plays a central role in many applications, such as diagnosis, expert systems, and causal reasoning. In a very broad sense we can state that abduction is the inference process that goes from observations to explanations within a more general context or theoretical framework. That is to say, abductive inference looks for sentences (named explanations), which, added to the theory, enable deductions for the observations. Most of the times there are several such explanations for a given observation. For this reason, in a narrower sense, abduction is regarded as an inference to the best explanation. However, a problem that faces abduction is the explanation of anomalous observations, i. e., observations that are contradictory with the current theory. It is perhaps impossible to do such inferences in monotonic theories. For this reason, in this work we will consider the problem of characterizing abduction in nonmonotonic theories. Our inference system is based on a natural deduction presentation of the implicational segment of a relevant logic, much similar to the R! system of Anderson and Belnap. Then we will discuss some issues arising the pragmatic acceptance of abductive inferences in nonmonotonic theories.
Eje: Aspectos teóricos de inteligencia artificial
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
abduction
observation
inference system
inference process
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/21801

id SEDICI_abebae787cb37b48699bae257a6ea07b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/21801
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Embedding abduction in nonmonotonic theoriesDelrieux, ClaudioCiencias InformáticasARTIFICIAL INTELLIGENCEabductionobservationinference systeminference processAn important ampliative inference schema that is commonly used is abduction. Abduction plays a central role in many applications, such as diagnosis, expert systems, and causal reasoning. In a very broad sense we can state that abduction is the inference process that goes from observations to explanations within a more general context or theoretical framework. That is to say, abductive inference looks for sentences (named explanations), which, added to the theory, enable deductions for the observations. Most of the times there are several such explanations for a given observation. For this reason, in a narrower sense, abduction is regarded as an inference to the best explanation. However, a problem that faces abduction is the explanation of anomalous observations, i. e., observations that are contradictory with the current theory. It is perhaps impossible to do such inferences in monotonic theories. For this reason, in this work we will consider the problem of characterizing abduction in nonmonotonic theories. Our inference system is based on a natural deduction presentation of the implicational segment of a relevant logic, much similar to the R! system of Anderson and Belnap. Then we will discuss some issues arising the pragmatic acceptance of abductive inferences in nonmonotonic theories.Eje: Aspectos teóricos de inteligencia artificialRed de Universidades con Carreras en Informática (RedUNCI)2002-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf24-28http://sedici.unlp.edu.ar/handle/10915/21801enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:37Zoai:sedici.unlp.edu.ar:10915/21801Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:37.646SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Embedding abduction in nonmonotonic theories
title Embedding abduction in nonmonotonic theories
spellingShingle Embedding abduction in nonmonotonic theories
Delrieux, Claudio
Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
abduction
observation
inference system
inference process
title_short Embedding abduction in nonmonotonic theories
title_full Embedding abduction in nonmonotonic theories
title_fullStr Embedding abduction in nonmonotonic theories
title_full_unstemmed Embedding abduction in nonmonotonic theories
title_sort Embedding abduction in nonmonotonic theories
dc.creator.none.fl_str_mv Delrieux, Claudio
author Delrieux, Claudio
author_facet Delrieux, Claudio
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
abduction
observation
inference system
inference process
topic Ciencias Informáticas
ARTIFICIAL INTELLIGENCE
abduction
observation
inference system
inference process
dc.description.none.fl_txt_mv An important ampliative inference schema that is commonly used is abduction. Abduction plays a central role in many applications, such as diagnosis, expert systems, and causal reasoning. In a very broad sense we can state that abduction is the inference process that goes from observations to explanations within a more general context or theoretical framework. That is to say, abductive inference looks for sentences (named explanations), which, added to the theory, enable deductions for the observations. Most of the times there are several such explanations for a given observation. For this reason, in a narrower sense, abduction is regarded as an inference to the best explanation. However, a problem that faces abduction is the explanation of anomalous observations, i. e., observations that are contradictory with the current theory. It is perhaps impossible to do such inferences in monotonic theories. For this reason, in this work we will consider the problem of characterizing abduction in nonmonotonic theories. Our inference system is based on a natural deduction presentation of the implicational segment of a relevant logic, much similar to the R! system of Anderson and Belnap. Then we will discuss some issues arising the pragmatic acceptance of abductive inferences in nonmonotonic theories.
Eje: Aspectos teóricos de inteligencia artificial
Red de Universidades con Carreras en Informática (RedUNCI)
description An important ampliative inference schema that is commonly used is abduction. Abduction plays a central role in many applications, such as diagnosis, expert systems, and causal reasoning. In a very broad sense we can state that abduction is the inference process that goes from observations to explanations within a more general context or theoretical framework. That is to say, abductive inference looks for sentences (named explanations), which, added to the theory, enable deductions for the observations. Most of the times there are several such explanations for a given observation. For this reason, in a narrower sense, abduction is regarded as an inference to the best explanation. However, a problem that faces abduction is the explanation of anomalous observations, i. e., observations that are contradictory with the current theory. It is perhaps impossible to do such inferences in monotonic theories. For this reason, in this work we will consider the problem of characterizing abduction in nonmonotonic theories. Our inference system is based on a natural deduction presentation of the implicational segment of a relevant logic, much similar to the R! system of Anderson and Belnap. Then we will discuss some issues arising the pragmatic acceptance of abductive inferences in nonmonotonic theories.
publishDate 2002
dc.date.none.fl_str_mv 2002-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/21801
url http://sedici.unlp.edu.ar/handle/10915/21801
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
24-28
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260114127454208
score 13.13397