Quantum quench dynamics of the Luttinger model
- Autores
- Iucci, Carlos Aníbal; Cazalilla, Miguel A.
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The dynamics of the Luttinger model after a quantum quench is studied. We compute in detail one- and two-point correlation functions for two types of quenches: from a noninteracting to an interacting Luttinger model and vice versa. In the former case, the noninteracting Fermi gas features in the momentum distribution and other correlation functions are destroyed as time evolves. In the infinite-time limit, equal-time correlations are power laws but the critical exponents are found to differ from their equilibrium values. In all cases, we find that these correlations are well described by a generalized Gibbs ensemble [M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007)], which assigns a momentum-dependent temperature to each eigenmode.
Instituto de Física La Plata - Materia
-
Física
Distribution (mathematics)
Physics
Critical exponent
Canonical ensemble
Normal mode
Momentum
Quantum mechanics
Quantum
Fermi gas
Power law - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/126229
Ver los metadatos del registro completo
id |
SEDICI_a9a523b2fdf7b490698b2554db216bbb |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/126229 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Quantum quench dynamics of the Luttinger modelIucci, Carlos AníbalCazalilla, Miguel A.FísicaDistribution (mathematics)PhysicsCritical exponentCanonical ensembleNormal modeMomentumQuantum mechanicsQuantumFermi gasPower lawThe dynamics of the Luttinger model after a quantum quench is studied. We compute in detail one- and two-point correlation functions for two types of quenches: from a noninteracting to an interacting Luttinger model and vice versa. In the former case, the noninteracting Fermi gas features in the momentum distribution and other correlation functions are destroyed as time evolves. In the infinite-time limit, equal-time correlations are power laws but the critical exponents are found to differ from their equilibrium values. In all cases, we find that these correlations are well described by a generalized Gibbs ensemble [M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007)], which assigns a momentum-dependent temperature to each eigenmode.Instituto de Física La Plata2009-12-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126229enginfo:eu-repo/semantics/altIdentifier/issn/1050-2947info:eu-repo/semantics/altIdentifier/issn/1094-1622info:eu-repo/semantics/altIdentifier/arxiv/0903.1205info:eu-repo/semantics/altIdentifier/doi/10.1103/physreva.80.063619info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:30:13Zoai:sedici.unlp.edu.ar:10915/126229Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:30:14.199SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Quantum quench dynamics of the Luttinger model |
title |
Quantum quench dynamics of the Luttinger model |
spellingShingle |
Quantum quench dynamics of the Luttinger model Iucci, Carlos Aníbal Física Distribution (mathematics) Physics Critical exponent Canonical ensemble Normal mode Momentum Quantum mechanics Quantum Fermi gas Power law |
title_short |
Quantum quench dynamics of the Luttinger model |
title_full |
Quantum quench dynamics of the Luttinger model |
title_fullStr |
Quantum quench dynamics of the Luttinger model |
title_full_unstemmed |
Quantum quench dynamics of the Luttinger model |
title_sort |
Quantum quench dynamics of the Luttinger model |
dc.creator.none.fl_str_mv |
Iucci, Carlos Aníbal Cazalilla, Miguel A. |
author |
Iucci, Carlos Aníbal |
author_facet |
Iucci, Carlos Aníbal Cazalilla, Miguel A. |
author_role |
author |
author2 |
Cazalilla, Miguel A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Distribution (mathematics) Physics Critical exponent Canonical ensemble Normal mode Momentum Quantum mechanics Quantum Fermi gas Power law |
topic |
Física Distribution (mathematics) Physics Critical exponent Canonical ensemble Normal mode Momentum Quantum mechanics Quantum Fermi gas Power law |
dc.description.none.fl_txt_mv |
The dynamics of the Luttinger model after a quantum quench is studied. We compute in detail one- and two-point correlation functions for two types of quenches: from a noninteracting to an interacting Luttinger model and vice versa. In the former case, the noninteracting Fermi gas features in the momentum distribution and other correlation functions are destroyed as time evolves. In the infinite-time limit, equal-time correlations are power laws but the critical exponents are found to differ from their equilibrium values. In all cases, we find that these correlations are well described by a generalized Gibbs ensemble [M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007)], which assigns a momentum-dependent temperature to each eigenmode. Instituto de Física La Plata |
description |
The dynamics of the Luttinger model after a quantum quench is studied. We compute in detail one- and two-point correlation functions for two types of quenches: from a noninteracting to an interacting Luttinger model and vice versa. In the former case, the noninteracting Fermi gas features in the momentum distribution and other correlation functions are destroyed as time evolves. In the infinite-time limit, equal-time correlations are power laws but the critical exponents are found to differ from their equilibrium values. In all cases, we find that these correlations are well described by a generalized Gibbs ensemble [M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev. Lett. 98, 050405 (2007)], which assigns a momentum-dependent temperature to each eigenmode. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/126229 |
url |
http://sedici.unlp.edu.ar/handle/10915/126229 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1050-2947 info:eu-repo/semantics/altIdentifier/issn/1094-1622 info:eu-repo/semantics/altIdentifier/arxiv/0903.1205 info:eu-repo/semantics/altIdentifier/doi/10.1103/physreva.80.063619 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616182084141056 |
score |
13.070432 |