Cálculo simbólico sobre estados coherentes generalizados
- Autores
- Ramírez, Romina Andrea
- Año de publicación
- 2013
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Rossini, Gerardo
Sanmartino, Marcela - Descripción
- Un concepto fundamental en el análisis funcional y sus aplicaciones en física-matemática, es la existencia de conjuntos completos de vectores ortonormales en un espacio de Hilbert. Existen también conjuntos sobrecompletos, que pierden la propiedad de ortogonalidad pero conservan la resolución de la identidad. En particular, los denominados sistemas de estados coherentes son ubicuos en Mecánica Cuántica. Los estados coherentes han sido considerados en el marco de la Mecánica Cuántica por Schrödinger y von Neumann, pero fue mucho más tarde que comenzó el desarrollo sistemático de sus definiciones y del análisis funcional sobre tales bases sobre-completas ([Berezin 1971], [Berezin 1974], [Glauber 1963]). Esta serie de trabajos dio lugar al sistema estándar de estados coherentes en el plano complejo, asociado al grupo de Heisenberg-Weyl como grupo de simetría del espacio de fases de la dinámica clásica de partículas libres. La variable compleja, como parámetro del sistema de estados coherentes, permite describir los vectores del espacio de Hilbert como funciones analíticas enteras en el espacio de Segal-Bargmann. Es precisamente la analiticidad la que permite describir operadores mediante símbolos y permite desarrollar el cálculo simbólico. Posteriores generalizaciones [Perelomov 1986] permitieron de finir y utilizar estados coherentes en variedades más elaboradas, localmente isomorfas a Cn. Diversos conceptos de análisis funcional se generalizan casi trivialmente a estas variedades [Bates 1997, Hurt 1983, Simms 1976] siguiendo el formalismo de estados coherentes del plano. Este formidable aparato analítico inspiró la introducción de estados coherentes en la descripción de sistemas fermiónicos en Mecánica Cuántica. En este caso las variables que parametrizan el sistema de estados coherentes no son puntos en una variedad compleja sino las llamadas variables de Grassmann, elementos nilpotentes, con la propiedad de conjugación pero con un producto anticonmutativo. El eje de esta tesis es la revisión, extensión de propiedades y utilización de estados coherentes en distintos contextos de interés en Mecánica Cuántica y Análisis Funcional.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Matemática
operadores Toeplitz
mecánica cuántica
álgebra paraGrassmann
análisis funcional - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/32915
Ver los metadatos del registro completo
id |
SEDICI_a780b85aa1ced202bd505010a45c6f6b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/32915 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Cálculo simbólico sobre estados coherentes generalizadosRamírez, Romina AndreaCiencias ExactasMatemáticaoperadores Toeplitzmecánica cuánticaálgebra paraGrassmannanálisis funcionalUn concepto fundamental en el análisis funcional y sus aplicaciones en física-matemática, es la existencia de conjuntos completos de vectores ortonormales en un espacio de Hilbert. Existen también conjuntos sobrecompletos, que pierden la propiedad de ortogonalidad pero conservan la resolución de la identidad. En particular, los denominados sistemas de estados coherentes son ubicuos en Mecánica Cuántica. Los estados coherentes han sido considerados en el marco de la Mecánica Cuántica por Schrödinger y von Neumann, pero fue mucho más tarde que comenzó el desarrollo sistemático de sus definiciones y del análisis funcional sobre tales bases sobre-completas ([Berezin 1971], [Berezin 1974], [Glauber 1963]). Esta serie de trabajos dio lugar al sistema estándar de estados coherentes en el plano complejo, asociado al grupo de Heisenberg-Weyl como grupo de simetría del espacio de fases de la dinámica clásica de partículas libres. La variable compleja, como parámetro del sistema de estados coherentes, permite describir los vectores del espacio de Hilbert como funciones analíticas enteras en el espacio de Segal-Bargmann. Es precisamente la analiticidad la que permite describir operadores mediante símbolos y permite desarrollar el cálculo simbólico. Posteriores generalizaciones [Perelomov 1986] permitieron de finir y utilizar estados coherentes en variedades más elaboradas, localmente isomorfas a C<SUP>n</SUP>. Diversos conceptos de análisis funcional se generalizan casi trivialmente a estas variedades [Bates 1997, Hurt 1983, Simms 1976] siguiendo el formalismo de estados coherentes del plano. Este formidable aparato analítico inspiró la introducción de estados coherentes en la descripción de sistemas fermiónicos en Mecánica Cuántica. En este caso las variables que parametrizan el sistema de estados coherentes no son puntos en una variedad compleja sino las llamadas variables de Grassmann, elementos nilpotentes, con la propiedad de conjugación pero con un producto anticonmutativo. El eje de esta tesis es la revisión, extensión de propiedades y utilización de estados coherentes en distintos contextos de interés en Mecánica Cuántica y Análisis Funcional.Doctor en Ciencias Exactas, área MatemáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasRossini, GerardoSanmartino, Marcela2013-12-18info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/32915https://doi.org/10.35537/10915/32915spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/2.5/ar/Creative Commons Attribution-NonCommercial 2.5 Argentina (CC BY-NC 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:58:30Zoai:sedici.unlp.edu.ar:10915/32915Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:58:30.487SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Cálculo simbólico sobre estados coherentes generalizados |
title |
Cálculo simbólico sobre estados coherentes generalizados |
spellingShingle |
Cálculo simbólico sobre estados coherentes generalizados Ramírez, Romina Andrea Ciencias Exactas Matemática operadores Toeplitz mecánica cuántica álgebra paraGrassmann análisis funcional |
title_short |
Cálculo simbólico sobre estados coherentes generalizados |
title_full |
Cálculo simbólico sobre estados coherentes generalizados |
title_fullStr |
Cálculo simbólico sobre estados coherentes generalizados |
title_full_unstemmed |
Cálculo simbólico sobre estados coherentes generalizados |
title_sort |
Cálculo simbólico sobre estados coherentes generalizados |
dc.creator.none.fl_str_mv |
Ramírez, Romina Andrea |
author |
Ramírez, Romina Andrea |
author_facet |
Ramírez, Romina Andrea |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rossini, Gerardo Sanmartino, Marcela |
dc.subject.none.fl_str_mv |
Ciencias Exactas Matemática operadores Toeplitz mecánica cuántica álgebra paraGrassmann análisis funcional |
topic |
Ciencias Exactas Matemática operadores Toeplitz mecánica cuántica álgebra paraGrassmann análisis funcional |
dc.description.none.fl_txt_mv |
Un concepto fundamental en el análisis funcional y sus aplicaciones en física-matemática, es la existencia de conjuntos completos de vectores ortonormales en un espacio de Hilbert. Existen también conjuntos sobrecompletos, que pierden la propiedad de ortogonalidad pero conservan la resolución de la identidad. En particular, los denominados sistemas de estados coherentes son ubicuos en Mecánica Cuántica. Los estados coherentes han sido considerados en el marco de la Mecánica Cuántica por Schrödinger y von Neumann, pero fue mucho más tarde que comenzó el desarrollo sistemático de sus definiciones y del análisis funcional sobre tales bases sobre-completas ([Berezin 1971], [Berezin 1974], [Glauber 1963]). Esta serie de trabajos dio lugar al sistema estándar de estados coherentes en el plano complejo, asociado al grupo de Heisenberg-Weyl como grupo de simetría del espacio de fases de la dinámica clásica de partículas libres. La variable compleja, como parámetro del sistema de estados coherentes, permite describir los vectores del espacio de Hilbert como funciones analíticas enteras en el espacio de Segal-Bargmann. Es precisamente la analiticidad la que permite describir operadores mediante símbolos y permite desarrollar el cálculo simbólico. Posteriores generalizaciones [Perelomov 1986] permitieron de finir y utilizar estados coherentes en variedades más elaboradas, localmente isomorfas a C<SUP>n</SUP>. Diversos conceptos de análisis funcional se generalizan casi trivialmente a estas variedades [Bates 1997, Hurt 1983, Simms 1976] siguiendo el formalismo de estados coherentes del plano. Este formidable aparato analítico inspiró la introducción de estados coherentes en la descripción de sistemas fermiónicos en Mecánica Cuántica. En este caso las variables que parametrizan el sistema de estados coherentes no son puntos en una variedad compleja sino las llamadas variables de Grassmann, elementos nilpotentes, con la propiedad de conjugación pero con un producto anticonmutativo. El eje de esta tesis es la revisión, extensión de propiedades y utilización de estados coherentes en distintos contextos de interés en Mecánica Cuántica y Análisis Funcional. Doctor en Ciencias Exactas, área Matemática Universidad Nacional de La Plata Facultad de Ciencias Exactas |
description |
Un concepto fundamental en el análisis funcional y sus aplicaciones en física-matemática, es la existencia de conjuntos completos de vectores ortonormales en un espacio de Hilbert. Existen también conjuntos sobrecompletos, que pierden la propiedad de ortogonalidad pero conservan la resolución de la identidad. En particular, los denominados sistemas de estados coherentes son ubicuos en Mecánica Cuántica. Los estados coherentes han sido considerados en el marco de la Mecánica Cuántica por Schrödinger y von Neumann, pero fue mucho más tarde que comenzó el desarrollo sistemático de sus definiciones y del análisis funcional sobre tales bases sobre-completas ([Berezin 1971], [Berezin 1974], [Glauber 1963]). Esta serie de trabajos dio lugar al sistema estándar de estados coherentes en el plano complejo, asociado al grupo de Heisenberg-Weyl como grupo de simetría del espacio de fases de la dinámica clásica de partículas libres. La variable compleja, como parámetro del sistema de estados coherentes, permite describir los vectores del espacio de Hilbert como funciones analíticas enteras en el espacio de Segal-Bargmann. Es precisamente la analiticidad la que permite describir operadores mediante símbolos y permite desarrollar el cálculo simbólico. Posteriores generalizaciones [Perelomov 1986] permitieron de finir y utilizar estados coherentes en variedades más elaboradas, localmente isomorfas a C<SUP>n</SUP>. Diversos conceptos de análisis funcional se generalizan casi trivialmente a estas variedades [Bates 1997, Hurt 1983, Simms 1976] siguiendo el formalismo de estados coherentes del plano. Este formidable aparato analítico inspiró la introducción de estados coherentes en la descripción de sistemas fermiónicos en Mecánica Cuántica. En este caso las variables que parametrizan el sistema de estados coherentes no son puntos en una variedad compleja sino las llamadas variables de Grassmann, elementos nilpotentes, con la propiedad de conjugación pero con un producto anticonmutativo. El eje de esta tesis es la revisión, extensión de propiedades y utilización de estados coherentes en distintos contextos de interés en Mecánica Cuántica y Análisis Funcional. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-18 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion Tesis de doctorado http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/32915 https://doi.org/10.35537/10915/32915 |
url |
http://sedici.unlp.edu.ar/handle/10915/32915 https://doi.org/10.35537/10915/32915 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/2.5/ar/ Creative Commons Attribution-NonCommercial 2.5 Argentina (CC BY-NC 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/2.5/ar/ Creative Commons Attribution-NonCommercial 2.5 Argentina (CC BY-NC 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615847841103872 |
score |
13.070432 |