Procesos catalíticos para biorrefinerías: conversión de glicerol para la producción de biopropilenglicol

Autores
Gatti, Martín Nicolás
Año de publicación
2019
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Nichio, Nora Nancy
Volpe, María Alicia
Casuscelli, Sandra Graciela
Milt, Viviana Guadalupe
Descripción
Esta tesis plantea la preparación y caracterización de catalizadores para la conversión de glicerol a biopropilenglicol. En el capítulo 1 se presentan conceptos básicos de biomasa, su transformación y la posibilidad, a partir de ella, de sustituir algunos de los productos químicos derivados del petróleo que la sociedad utiliza actualmente. En este marco, es interesante plantear la utilización del glicerol como recurso proveniente de la biomasa obtenido a partir de la producción de biodiesel. El 1,2-propilenglicol (1,2-PG) es tradicionalmente obtenido por hidratación del óxido de propileno (OP), compuesto que se obtiene vía petroquímica. El proceso de transformación del glicerol para producir 1,2 PG generaría un reemplazo de procesos de síntesis petroquímicos por procesos que valorizan fuentes renovables. El precio del 1,2-PG en el mercado es mucho mayor que el precio del glicerol, lo cual estimula el desarrollo de un nuevo proceso químico que permita la producción de 1,2-PG a partir del glicerol. Además, debido a que actualmente Argentina no produce 1,2-PG, sino que debe importarlo en su totalidad, este nuevo proceso permitiría un mayor desarrollo productivo nacional. En el capítulo 2 se presenta la revisión bibliográfica, que aborda todo lo relativo a la reacción química de hidrogenólisis, los mecanismos de reacción, los catalizadores empleados y sus propiedades; destacando el efecto de las condiciones operativas empleadas, así como también estudios vinculados a la cinética y estabilidad de los catalizadores. En el capítulo 3 se detallan los materiales empleados (reactivos, solventes, gases, indicadores, ácidos y bases) para llevar a cabo el estudio experimental de la presente tesis. Se describen los equipos de reacción empleados y las técnicas experimentales de preparación y caracterización de los catalizadores (AAS, TPR, BET, DRX, TEM, Titulación potenciométrica, XPS, Raman, EXAFS, etc.), y la metodología empleada para la cuantificación de los resultados experimentales. Además se presentan las ecuaciones empleadas en los cálculos realizados. En la revisión bibliográfica, capítulo 2, queda demostrada la importancia de la estabilidad del soporte en las condiciones de reacción en fase líquida a temperaturas entre 150-260 °C, altas presiones entre 20-80 bar y la presencia de agua líquida. En el capítulo 4 se muestran los resultados de la preparación de soportes del tipo silíceos-carbonosos mediante la técnica sol-gel. Esta técnica permite el diseño de estructuras nano y mesoporosas con características texturales controladas, tales como el tamaño y tipo de poros y la superficie específica. Las propiedades ácido-base del soporte fueron evaluadas empleando varias técnicas que se complementan entre sí: la titulación potenciométrica, la reacción de descomposición de isopropanol y la titulación de Boehm. Con el objetivo de evaluar la estabilidad de los soportes en las condiciones hidrotérmicas de la reacción de hidrogenólisis en fase líquida, los materiales SC, C y SiO2 fueron tratados en agua caliente a diferentes temperaturas. Se caracterizaron las muestras de soportes por análisis termogravimétrico (TPO/TGA), análisis térmico diferencial (ATD), adsorción-desorción de N2 (BET), difracción de rayos X (DRX), espectroscopía de fotoelectrones (XPS) y espectroscopía Raman. En el capítulo 5 se presenta el análisis realizado para verificar la ausencia de resistencias externas e internas a la transferencia de materia y energía. En este capítulo también se presentan los resultados de los ensayos de reacción, con catalizadores de Ru, Ni y Cu, para seleccionar la fase metálica de los estudios posteriores. En el capítulo 6 se presenta un estudio de los catalizadores de Ni preparados a partir de tres precursores de Ni; NiCl2.6H2O, Ni(CH3COO)2.4H2O y Ni(NO3)2.6H2O. En primera instancia se estudian los diferentes pretratamientos, considerando que el precursor empleado, las temperaturas, atmósferas y tiempos de los tratamientos afectan al catalizador final. Posteriormente se estudia el efecto del precursor de níquel, para seleccionar el catalizador que conduce a mayor nivel de conversión y selectividad a 1,2-PG. Luego, para el precursor seleccionado, se procede a evaluar el efecto del soporte, considerando para este análisis los soportes C, SiO2, además del SC. Finalmente, con el catalizador de Ni/SC, se estudia el efecto de las principales variables operativas de la reacción de hidrogenólisis y se analizan los cambios estructurales que sufre el catalizador luego de la reacción. En el capítulo 7 se estudia la funcionalización del soporte SC empleando la técnica de oxidación con HNO3, dado que se logran elevados niveles de acidez con bajas pérdidas de masa de carbón. Se caracterizan las propiedades estructurales y ácidas y se correlacionan con las variables operativas de la funcionalización. Finalmente se compara la actividad de los catalizadores preparados con los soportes SC funcionalizados con el catalizador Ni/SC. En el capítulo 8 se presentan los resultados de la modificación de la fase activa de Ni por adición de un promotor metálico. En la primera parte de este capítulo se detalla la preparación del catalizador bimetálico mediante la técnica derivada de la química organometálica de superficies (QOMS/M), una técnica de preparación controlada que se caracteriza por la obtención de fases bimetálicas homogéneas y bien dispersas, sobre todo cuando se adicionan pequeñas cantidades de un promotor metálico. Posteriormente se presentan los resultados de caracterización por adsorción-desorción de N2 (BET), microscopía de transmisión electrónica (TEM), titulación potenciométrica, difracción de rayos X (DRX) y absorción de rayos X extendida a estructura fina (EXAFS). Finalmente se presentan los resultados de actividad catalítica y se correlacionan con los resultados de caracterización de los catalizadores. Por último, se presentan las conclusiones generales y las perspectivas surgidas a partir de este estudio de tesis.
Doctor en Ingeniería
Universidad Nacional de La Plata
Facultad de Ingeniería
Materia
Ingeniería
biorrefenierías
Catálisis
Glicerol
biopropilenglicol
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/73817

id SEDICI_a692b55b8578428aceef600d77b5bdd3
oai_identifier_str oai:sedici.unlp.edu.ar:10915/73817
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Procesos catalíticos para biorrefinerías: conversión de glicerol para la producción de biopropilenglicolGatti, Martín NicolásIngenieríabiorrefenieríasCatálisisGlicerolbiopropilenglicolEsta tesis plantea la preparación y caracterización de catalizadores para la conversión de glicerol a biopropilenglicol. En el capítulo 1 se presentan conceptos básicos de biomasa, su transformación y la posibilidad, a partir de ella, de sustituir algunos de los productos químicos derivados del petróleo que la sociedad utiliza actualmente. En este marco, es interesante plantear la utilización del glicerol como recurso proveniente de la biomasa obtenido a partir de la producción de biodiesel. El 1,2-propilenglicol (1,2-PG) es tradicionalmente obtenido por hidratación del óxido de propileno (OP), compuesto que se obtiene vía petroquímica. El proceso de transformación del glicerol para producir 1,2 PG generaría un reemplazo de procesos de síntesis petroquímicos por procesos que valorizan fuentes renovables. El precio del 1,2-PG en el mercado es mucho mayor que el precio del glicerol, lo cual estimula el desarrollo de un nuevo proceso químico que permita la producción de 1,2-PG a partir del glicerol. Además, debido a que actualmente Argentina no produce 1,2-PG, sino que debe importarlo en su totalidad, este nuevo proceso permitiría un mayor desarrollo productivo nacional. En el capítulo 2 se presenta la revisión bibliográfica, que aborda todo lo relativo a la reacción química de hidrogenólisis, los mecanismos de reacción, los catalizadores empleados y sus propiedades; destacando el efecto de las condiciones operativas empleadas, así como también estudios vinculados a la cinética y estabilidad de los catalizadores. En el capítulo 3 se detallan los materiales empleados (reactivos, solventes, gases, indicadores, ácidos y bases) para llevar a cabo el estudio experimental de la presente tesis. Se describen los equipos de reacción empleados y las técnicas experimentales de preparación y caracterización de los catalizadores (AAS, TPR, BET, DRX, TEM, Titulación potenciométrica, XPS, Raman, EXAFS, etc.), y la metodología empleada para la cuantificación de los resultados experimentales. Además se presentan las ecuaciones empleadas en los cálculos realizados. En la revisión bibliográfica, capítulo 2, queda demostrada la importancia de la estabilidad del soporte en las condiciones de reacción en fase líquida a temperaturas entre 150-260 °C, altas presiones entre 20-80 bar y la presencia de agua líquida. En el capítulo 4 se muestran los resultados de la preparación de soportes del tipo silíceos-carbonosos mediante la técnica sol-gel. Esta técnica permite el diseño de estructuras nano y mesoporosas con características texturales controladas, tales como el tamaño y tipo de poros y la superficie específica. Las propiedades ácido-base del soporte fueron evaluadas empleando varias técnicas que se complementan entre sí: la titulación potenciométrica, la reacción de descomposición de isopropanol y la titulación de Boehm. Con el objetivo de evaluar la estabilidad de los soportes en las condiciones hidrotérmicas de la reacción de hidrogenólisis en fase líquida, los materiales SC, C y SiO2 fueron tratados en agua caliente a diferentes temperaturas. Se caracterizaron las muestras de soportes por análisis termogravimétrico (TPO/TGA), análisis térmico diferencial (ATD), adsorción-desorción de N2 (BET), difracción de rayos X (DRX), espectroscopía de fotoelectrones (XPS) y espectroscopía Raman. En el capítulo 5 se presenta el análisis realizado para verificar la ausencia de resistencias externas e internas a la transferencia de materia y energía. En este capítulo también se presentan los resultados de los ensayos de reacción, con catalizadores de Ru, Ni y Cu, para seleccionar la fase metálica de los estudios posteriores. En el capítulo 6 se presenta un estudio de los catalizadores de Ni preparados a partir de tres precursores de Ni; NiCl2.6H2O, Ni(CH3COO)2.4H2O y Ni(NO3)2.6H2O. En primera instancia se estudian los diferentes pretratamientos, considerando que el precursor empleado, las temperaturas, atmósferas y tiempos de los tratamientos afectan al catalizador final. Posteriormente se estudia el efecto del precursor de níquel, para seleccionar el catalizador que conduce a mayor nivel de conversión y selectividad a 1,2-PG. Luego, para el precursor seleccionado, se procede a evaluar el efecto del soporte, considerando para este análisis los soportes C, SiO2, además del SC. Finalmente, con el catalizador de Ni/SC, se estudia el efecto de las principales variables operativas de la reacción de hidrogenólisis y se analizan los cambios estructurales que sufre el catalizador luego de la reacción. En el capítulo 7 se estudia la funcionalización del soporte SC empleando la técnica de oxidación con HNO3, dado que se logran elevados niveles de acidez con bajas pérdidas de masa de carbón. Se caracterizan las propiedades estructurales y ácidas y se correlacionan con las variables operativas de la funcionalización. Finalmente se compara la actividad de los catalizadores preparados con los soportes SC funcionalizados con el catalizador Ni/SC. En el capítulo 8 se presentan los resultados de la modificación de la fase activa de Ni por adición de un promotor metálico. En la primera parte de este capítulo se detalla la preparación del catalizador bimetálico mediante la técnica derivada de la química organometálica de superficies (QOMS/M), una técnica de preparación controlada que se caracteriza por la obtención de fases bimetálicas homogéneas y bien dispersas, sobre todo cuando se adicionan pequeñas cantidades de un promotor metálico. Posteriormente se presentan los resultados de caracterización por adsorción-desorción de N2 (BET), microscopía de transmisión electrónica (TEM), titulación potenciométrica, difracción de rayos X (DRX) y absorción de rayos X extendida a estructura fina (EXAFS). Finalmente se presentan los resultados de actividad catalítica y se correlacionan con los resultados de caracterización de los catalizadores. Por último, se presentan las conclusiones generales y las perspectivas surgidas a partir de este estudio de tesis.Doctor en IngenieríaUniversidad Nacional de La PlataFacultad de IngenieríaNichio, Nora NancyVolpe, María AliciaCasuscelli, Sandra GracielaMilt, Viviana Guadalupe2019-03-14info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/73817https://doi.org/10.35537/10915/73817spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:44:39Zoai:sedici.unlp.edu.ar:10915/73817Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:44:39.45SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Procesos catalíticos para biorrefinerías: conversión de glicerol para la producción de biopropilenglicol
title Procesos catalíticos para biorrefinerías: conversión de glicerol para la producción de biopropilenglicol
spellingShingle Procesos catalíticos para biorrefinerías: conversión de glicerol para la producción de biopropilenglicol
Gatti, Martín Nicolás
Ingeniería
biorrefenierías
Catálisis
Glicerol
biopropilenglicol
title_short Procesos catalíticos para biorrefinerías: conversión de glicerol para la producción de biopropilenglicol
title_full Procesos catalíticos para biorrefinerías: conversión de glicerol para la producción de biopropilenglicol
title_fullStr Procesos catalíticos para biorrefinerías: conversión de glicerol para la producción de biopropilenglicol
title_full_unstemmed Procesos catalíticos para biorrefinerías: conversión de glicerol para la producción de biopropilenglicol
title_sort Procesos catalíticos para biorrefinerías: conversión de glicerol para la producción de biopropilenglicol
dc.creator.none.fl_str_mv Gatti, Martín Nicolás
author Gatti, Martín Nicolás
author_facet Gatti, Martín Nicolás
author_role author
dc.contributor.none.fl_str_mv Nichio, Nora Nancy
Volpe, María Alicia
Casuscelli, Sandra Graciela
Milt, Viviana Guadalupe
dc.subject.none.fl_str_mv Ingeniería
biorrefenierías
Catálisis
Glicerol
biopropilenglicol
topic Ingeniería
biorrefenierías
Catálisis
Glicerol
biopropilenglicol
dc.description.none.fl_txt_mv Esta tesis plantea la preparación y caracterización de catalizadores para la conversión de glicerol a biopropilenglicol. En el capítulo 1 se presentan conceptos básicos de biomasa, su transformación y la posibilidad, a partir de ella, de sustituir algunos de los productos químicos derivados del petróleo que la sociedad utiliza actualmente. En este marco, es interesante plantear la utilización del glicerol como recurso proveniente de la biomasa obtenido a partir de la producción de biodiesel. El 1,2-propilenglicol (1,2-PG) es tradicionalmente obtenido por hidratación del óxido de propileno (OP), compuesto que se obtiene vía petroquímica. El proceso de transformación del glicerol para producir 1,2 PG generaría un reemplazo de procesos de síntesis petroquímicos por procesos que valorizan fuentes renovables. El precio del 1,2-PG en el mercado es mucho mayor que el precio del glicerol, lo cual estimula el desarrollo de un nuevo proceso químico que permita la producción de 1,2-PG a partir del glicerol. Además, debido a que actualmente Argentina no produce 1,2-PG, sino que debe importarlo en su totalidad, este nuevo proceso permitiría un mayor desarrollo productivo nacional. En el capítulo 2 se presenta la revisión bibliográfica, que aborda todo lo relativo a la reacción química de hidrogenólisis, los mecanismos de reacción, los catalizadores empleados y sus propiedades; destacando el efecto de las condiciones operativas empleadas, así como también estudios vinculados a la cinética y estabilidad de los catalizadores. En el capítulo 3 se detallan los materiales empleados (reactivos, solventes, gases, indicadores, ácidos y bases) para llevar a cabo el estudio experimental de la presente tesis. Se describen los equipos de reacción empleados y las técnicas experimentales de preparación y caracterización de los catalizadores (AAS, TPR, BET, DRX, TEM, Titulación potenciométrica, XPS, Raman, EXAFS, etc.), y la metodología empleada para la cuantificación de los resultados experimentales. Además se presentan las ecuaciones empleadas en los cálculos realizados. En la revisión bibliográfica, capítulo 2, queda demostrada la importancia de la estabilidad del soporte en las condiciones de reacción en fase líquida a temperaturas entre 150-260 °C, altas presiones entre 20-80 bar y la presencia de agua líquida. En el capítulo 4 se muestran los resultados de la preparación de soportes del tipo silíceos-carbonosos mediante la técnica sol-gel. Esta técnica permite el diseño de estructuras nano y mesoporosas con características texturales controladas, tales como el tamaño y tipo de poros y la superficie específica. Las propiedades ácido-base del soporte fueron evaluadas empleando varias técnicas que se complementan entre sí: la titulación potenciométrica, la reacción de descomposición de isopropanol y la titulación de Boehm. Con el objetivo de evaluar la estabilidad de los soportes en las condiciones hidrotérmicas de la reacción de hidrogenólisis en fase líquida, los materiales SC, C y SiO2 fueron tratados en agua caliente a diferentes temperaturas. Se caracterizaron las muestras de soportes por análisis termogravimétrico (TPO/TGA), análisis térmico diferencial (ATD), adsorción-desorción de N2 (BET), difracción de rayos X (DRX), espectroscopía de fotoelectrones (XPS) y espectroscopía Raman. En el capítulo 5 se presenta el análisis realizado para verificar la ausencia de resistencias externas e internas a la transferencia de materia y energía. En este capítulo también se presentan los resultados de los ensayos de reacción, con catalizadores de Ru, Ni y Cu, para seleccionar la fase metálica de los estudios posteriores. En el capítulo 6 se presenta un estudio de los catalizadores de Ni preparados a partir de tres precursores de Ni; NiCl2.6H2O, Ni(CH3COO)2.4H2O y Ni(NO3)2.6H2O. En primera instancia se estudian los diferentes pretratamientos, considerando que el precursor empleado, las temperaturas, atmósferas y tiempos de los tratamientos afectan al catalizador final. Posteriormente se estudia el efecto del precursor de níquel, para seleccionar el catalizador que conduce a mayor nivel de conversión y selectividad a 1,2-PG. Luego, para el precursor seleccionado, se procede a evaluar el efecto del soporte, considerando para este análisis los soportes C, SiO2, además del SC. Finalmente, con el catalizador de Ni/SC, se estudia el efecto de las principales variables operativas de la reacción de hidrogenólisis y se analizan los cambios estructurales que sufre el catalizador luego de la reacción. En el capítulo 7 se estudia la funcionalización del soporte SC empleando la técnica de oxidación con HNO3, dado que se logran elevados niveles de acidez con bajas pérdidas de masa de carbón. Se caracterizan las propiedades estructurales y ácidas y se correlacionan con las variables operativas de la funcionalización. Finalmente se compara la actividad de los catalizadores preparados con los soportes SC funcionalizados con el catalizador Ni/SC. En el capítulo 8 se presentan los resultados de la modificación de la fase activa de Ni por adición de un promotor metálico. En la primera parte de este capítulo se detalla la preparación del catalizador bimetálico mediante la técnica derivada de la química organometálica de superficies (QOMS/M), una técnica de preparación controlada que se caracteriza por la obtención de fases bimetálicas homogéneas y bien dispersas, sobre todo cuando se adicionan pequeñas cantidades de un promotor metálico. Posteriormente se presentan los resultados de caracterización por adsorción-desorción de N2 (BET), microscopía de transmisión electrónica (TEM), titulación potenciométrica, difracción de rayos X (DRX) y absorción de rayos X extendida a estructura fina (EXAFS). Finalmente se presentan los resultados de actividad catalítica y se correlacionan con los resultados de caracterización de los catalizadores. Por último, se presentan las conclusiones generales y las perspectivas surgidas a partir de este estudio de tesis.
Doctor en Ingeniería
Universidad Nacional de La Plata
Facultad de Ingeniería
description Esta tesis plantea la preparación y caracterización de catalizadores para la conversión de glicerol a biopropilenglicol. En el capítulo 1 se presentan conceptos básicos de biomasa, su transformación y la posibilidad, a partir de ella, de sustituir algunos de los productos químicos derivados del petróleo que la sociedad utiliza actualmente. En este marco, es interesante plantear la utilización del glicerol como recurso proveniente de la biomasa obtenido a partir de la producción de biodiesel. El 1,2-propilenglicol (1,2-PG) es tradicionalmente obtenido por hidratación del óxido de propileno (OP), compuesto que se obtiene vía petroquímica. El proceso de transformación del glicerol para producir 1,2 PG generaría un reemplazo de procesos de síntesis petroquímicos por procesos que valorizan fuentes renovables. El precio del 1,2-PG en el mercado es mucho mayor que el precio del glicerol, lo cual estimula el desarrollo de un nuevo proceso químico que permita la producción de 1,2-PG a partir del glicerol. Además, debido a que actualmente Argentina no produce 1,2-PG, sino que debe importarlo en su totalidad, este nuevo proceso permitiría un mayor desarrollo productivo nacional. En el capítulo 2 se presenta la revisión bibliográfica, que aborda todo lo relativo a la reacción química de hidrogenólisis, los mecanismos de reacción, los catalizadores empleados y sus propiedades; destacando el efecto de las condiciones operativas empleadas, así como también estudios vinculados a la cinética y estabilidad de los catalizadores. En el capítulo 3 se detallan los materiales empleados (reactivos, solventes, gases, indicadores, ácidos y bases) para llevar a cabo el estudio experimental de la presente tesis. Se describen los equipos de reacción empleados y las técnicas experimentales de preparación y caracterización de los catalizadores (AAS, TPR, BET, DRX, TEM, Titulación potenciométrica, XPS, Raman, EXAFS, etc.), y la metodología empleada para la cuantificación de los resultados experimentales. Además se presentan las ecuaciones empleadas en los cálculos realizados. En la revisión bibliográfica, capítulo 2, queda demostrada la importancia de la estabilidad del soporte en las condiciones de reacción en fase líquida a temperaturas entre 150-260 °C, altas presiones entre 20-80 bar y la presencia de agua líquida. En el capítulo 4 se muestran los resultados de la preparación de soportes del tipo silíceos-carbonosos mediante la técnica sol-gel. Esta técnica permite el diseño de estructuras nano y mesoporosas con características texturales controladas, tales como el tamaño y tipo de poros y la superficie específica. Las propiedades ácido-base del soporte fueron evaluadas empleando varias técnicas que se complementan entre sí: la titulación potenciométrica, la reacción de descomposición de isopropanol y la titulación de Boehm. Con el objetivo de evaluar la estabilidad de los soportes en las condiciones hidrotérmicas de la reacción de hidrogenólisis en fase líquida, los materiales SC, C y SiO2 fueron tratados en agua caliente a diferentes temperaturas. Se caracterizaron las muestras de soportes por análisis termogravimétrico (TPO/TGA), análisis térmico diferencial (ATD), adsorción-desorción de N2 (BET), difracción de rayos X (DRX), espectroscopía de fotoelectrones (XPS) y espectroscopía Raman. En el capítulo 5 se presenta el análisis realizado para verificar la ausencia de resistencias externas e internas a la transferencia de materia y energía. En este capítulo también se presentan los resultados de los ensayos de reacción, con catalizadores de Ru, Ni y Cu, para seleccionar la fase metálica de los estudios posteriores. En el capítulo 6 se presenta un estudio de los catalizadores de Ni preparados a partir de tres precursores de Ni; NiCl2.6H2O, Ni(CH3COO)2.4H2O y Ni(NO3)2.6H2O. En primera instancia se estudian los diferentes pretratamientos, considerando que el precursor empleado, las temperaturas, atmósferas y tiempos de los tratamientos afectan al catalizador final. Posteriormente se estudia el efecto del precursor de níquel, para seleccionar el catalizador que conduce a mayor nivel de conversión y selectividad a 1,2-PG. Luego, para el precursor seleccionado, se procede a evaluar el efecto del soporte, considerando para este análisis los soportes C, SiO2, además del SC. Finalmente, con el catalizador de Ni/SC, se estudia el efecto de las principales variables operativas de la reacción de hidrogenólisis y se analizan los cambios estructurales que sufre el catalizador luego de la reacción. En el capítulo 7 se estudia la funcionalización del soporte SC empleando la técnica de oxidación con HNO3, dado que se logran elevados niveles de acidez con bajas pérdidas de masa de carbón. Se caracterizan las propiedades estructurales y ácidas y se correlacionan con las variables operativas de la funcionalización. Finalmente se compara la actividad de los catalizadores preparados con los soportes SC funcionalizados con el catalizador Ni/SC. En el capítulo 8 se presentan los resultados de la modificación de la fase activa de Ni por adición de un promotor metálico. En la primera parte de este capítulo se detalla la preparación del catalizador bimetálico mediante la técnica derivada de la química organometálica de superficies (QOMS/M), una técnica de preparación controlada que se caracteriza por la obtención de fases bimetálicas homogéneas y bien dispersas, sobre todo cuando se adicionan pequeñas cantidades de un promotor metálico. Posteriormente se presentan los resultados de caracterización por adsorción-desorción de N2 (BET), microscopía de transmisión electrónica (TEM), titulación potenciométrica, difracción de rayos X (DRX) y absorción de rayos X extendida a estructura fina (EXAFS). Finalmente se presentan los resultados de actividad catalítica y se correlacionan con los resultados de caracterización de los catalizadores. Por último, se presentan las conclusiones generales y las perspectivas surgidas a partir de este estudio de tesis.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-14
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/73817
https://doi.org/10.35537/10915/73817
url http://sedici.unlp.edu.ar/handle/10915/73817
https://doi.org/10.35537/10915/73817
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260318036688896
score 13.13397