Intelligent methods for information access in context: The role of topic descriptors and discriminators

Autores
Cecchini, Rocío L.; Maguitman, Ana Gabriela; Lorenzetti, Carlos M.
Año de publicación
2007
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Successful access to information sources on the Web depends on effective methods for identifying the needs of a user and making relevant information resources available when needed. This paper formulates a theoretical framework for the study of context-drivenWeb search and proposes new methods for learning query terms based on the user task. These methods use an incrementally-retrieved, topic-dependent selection of Web documents for term-weight reinforcement reflecting the aptness of the terms in describing and discriminating the topic of the user context. Based on this framework, we propose an incremental search algorithm for information retrieval agents that has the potential to improve significantly over the traditional IR techniques. The new algorithm learns new descriptors by searching for terms that tend to occur often in relevant documents, and learns good discriminators by identifying terms that tend to occur only in the context of the given topic. We discuss the technical challenges posed by this new framework, outline our agent system architecture, and present an evaluation of the proposed techniques.
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Informática
context modeling
information retrieval
Information Search and Retrieval
Web-based interaction
Value of information
Frameworks
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23581

id SEDICI_a64aa225938385ad36c7f1eaceec6058
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23581
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Intelligent methods for information access in context: The role of topic descriptors and discriminatorsCecchini, Rocío L.Maguitman, Ana GabrielaLorenzetti, Carlos M.Ciencias InformáticasInformáticacontext modelinginformation retrievalInformation Search and RetrievalWeb-based interactionValue of informationFrameworksSuccessful access to information sources on the Web depends on effective methods for identifying the needs of a user and making relevant information resources available when needed. This paper formulates a theoretical framework for the study of context-drivenWeb search and proposes new methods for learning query terms based on the user task. These methods use an incrementally-retrieved, topic-dependent selection of Web documents for term-weight reinforcement reflecting the aptness of the terms in describing and discriminating the topic of the user context. Based on this framework, we propose an incremental search algorithm for information retrieval agents that has the potential to improve significantly over the traditional IR techniques. The new algorithm learns new descriptors by searching for terms that tend to occur often in relevant documents, and learns good discriminators by identifying terms that tend to occur only in the context of the given topic. We discuss the technical challenges posed by this new framework, outline our agent system architecture, and present an evaluation of the proposed techniques.Red de Universidades con Carreras en Informática (RedUNCI)2007-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1608-1620http://sedici.unlp.edu.ar/handle/10915/23581enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:31Zoai:sedici.unlp.edu.ar:10915/23581Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:31.533SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Intelligent methods for information access in context: The role of topic descriptors and discriminators
title Intelligent methods for information access in context: The role of topic descriptors and discriminators
spellingShingle Intelligent methods for information access in context: The role of topic descriptors and discriminators
Cecchini, Rocío L.
Ciencias Informáticas
Informática
context modeling
information retrieval
Information Search and Retrieval
Web-based interaction
Value of information
Frameworks
title_short Intelligent methods for information access in context: The role of topic descriptors and discriminators
title_full Intelligent methods for information access in context: The role of topic descriptors and discriminators
title_fullStr Intelligent methods for information access in context: The role of topic descriptors and discriminators
title_full_unstemmed Intelligent methods for information access in context: The role of topic descriptors and discriminators
title_sort Intelligent methods for information access in context: The role of topic descriptors and discriminators
dc.creator.none.fl_str_mv Cecchini, Rocío L.
Maguitman, Ana Gabriela
Lorenzetti, Carlos M.
author Cecchini, Rocío L.
author_facet Cecchini, Rocío L.
Maguitman, Ana Gabriela
Lorenzetti, Carlos M.
author_role author
author2 Maguitman, Ana Gabriela
Lorenzetti, Carlos M.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Informática
context modeling
information retrieval
Information Search and Retrieval
Web-based interaction
Value of information
Frameworks
topic Ciencias Informáticas
Informática
context modeling
information retrieval
Information Search and Retrieval
Web-based interaction
Value of information
Frameworks
dc.description.none.fl_txt_mv Successful access to information sources on the Web depends on effective methods for identifying the needs of a user and making relevant information resources available when needed. This paper formulates a theoretical framework for the study of context-drivenWeb search and proposes new methods for learning query terms based on the user task. These methods use an incrementally-retrieved, topic-dependent selection of Web documents for term-weight reinforcement reflecting the aptness of the terms in describing and discriminating the topic of the user context. Based on this framework, we propose an incremental search algorithm for information retrieval agents that has the potential to improve significantly over the traditional IR techniques. The new algorithm learns new descriptors by searching for terms that tend to occur often in relevant documents, and learns good discriminators by identifying terms that tend to occur only in the context of the given topic. We discuss the technical challenges posed by this new framework, outline our agent system architecture, and present an evaluation of the proposed techniques.
Red de Universidades con Carreras en Informática (RedUNCI)
description Successful access to information sources on the Web depends on effective methods for identifying the needs of a user and making relevant information resources available when needed. This paper formulates a theoretical framework for the study of context-drivenWeb search and proposes new methods for learning query terms based on the user task. These methods use an incrementally-retrieved, topic-dependent selection of Web documents for term-weight reinforcement reflecting the aptness of the terms in describing and discriminating the topic of the user context. Based on this framework, we propose an incremental search algorithm for information retrieval agents that has the potential to improve significantly over the traditional IR techniques. The new algorithm learns new descriptors by searching for terms that tend to occur often in relevant documents, and learns good discriminators by identifying terms that tend to occur only in the context of the given topic. We discuss the technical challenges posed by this new framework, outline our agent system architecture, and present an evaluation of the proposed techniques.
publishDate 2007
dc.date.none.fl_str_mv 2007-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23581
url http://sedici.unlp.edu.ar/handle/10915/23581
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
1608-1620
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615814383140864
score 13.070432