Intelligent methods for information access in context: The role of topic descriptors and discriminators
- Autores
- Cecchini, Rocío L.; Maguitman, Ana Gabriela; Lorenzetti, Carlos M.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Successful access to information sources on the Web depends on effective methods for identifying the needs of a user and making relevant information resources available when needed. This paper formulates a theoretical framework for the study of context-drivenWeb search and proposes new methods for learning query terms based on the user task. These methods use an incrementally-retrieved, topic-dependent selection of Web documents for term-weight reinforcement reflecting the aptness of the terms in describing and discriminating the topic of the user context. Based on this framework, we propose an incremental search algorithm for information retrieval agents that has the potential to improve significantly over the traditional IR techniques. The new algorithm learns new descriptors by searching for terms that tend to occur often in relevant documents, and learns good discriminators by identifying terms that tend to occur only in the context of the given topic. We discuss the technical challenges posed by this new framework, outline our agent system architecture, and present an evaluation of the proposed techniques.
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Informática
context modeling
information retrieval
Information Search and Retrieval
Web-based interaction
Value of information
Frameworks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23581
Ver los metadatos del registro completo
id |
SEDICI_a64aa225938385ad36c7f1eaceec6058 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23581 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Intelligent methods for information access in context: The role of topic descriptors and discriminatorsCecchini, Rocío L.Maguitman, Ana GabrielaLorenzetti, Carlos M.Ciencias InformáticasInformáticacontext modelinginformation retrievalInformation Search and RetrievalWeb-based interactionValue of informationFrameworksSuccessful access to information sources on the Web depends on effective methods for identifying the needs of a user and making relevant information resources available when needed. This paper formulates a theoretical framework for the study of context-drivenWeb search and proposes new methods for learning query terms based on the user task. These methods use an incrementally-retrieved, topic-dependent selection of Web documents for term-weight reinforcement reflecting the aptness of the terms in describing and discriminating the topic of the user context. Based on this framework, we propose an incremental search algorithm for information retrieval agents that has the potential to improve significantly over the traditional IR techniques. The new algorithm learns new descriptors by searching for terms that tend to occur often in relevant documents, and learns good discriminators by identifying terms that tend to occur only in the context of the given topic. We discuss the technical challenges posed by this new framework, outline our agent system architecture, and present an evaluation of the proposed techniques.Red de Universidades con Carreras en Informática (RedUNCI)2007-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1608-1620http://sedici.unlp.edu.ar/handle/10915/23581enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:31Zoai:sedici.unlp.edu.ar:10915/23581Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:31.533SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Intelligent methods for information access in context: The role of topic descriptors and discriminators |
title |
Intelligent methods for information access in context: The role of topic descriptors and discriminators |
spellingShingle |
Intelligent methods for information access in context: The role of topic descriptors and discriminators Cecchini, Rocío L. Ciencias Informáticas Informática context modeling information retrieval Information Search and Retrieval Web-based interaction Value of information Frameworks |
title_short |
Intelligent methods for information access in context: The role of topic descriptors and discriminators |
title_full |
Intelligent methods for information access in context: The role of topic descriptors and discriminators |
title_fullStr |
Intelligent methods for information access in context: The role of topic descriptors and discriminators |
title_full_unstemmed |
Intelligent methods for information access in context: The role of topic descriptors and discriminators |
title_sort |
Intelligent methods for information access in context: The role of topic descriptors and discriminators |
dc.creator.none.fl_str_mv |
Cecchini, Rocío L. Maguitman, Ana Gabriela Lorenzetti, Carlos M. |
author |
Cecchini, Rocío L. |
author_facet |
Cecchini, Rocío L. Maguitman, Ana Gabriela Lorenzetti, Carlos M. |
author_role |
author |
author2 |
Maguitman, Ana Gabriela Lorenzetti, Carlos M. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Informática context modeling information retrieval Information Search and Retrieval Web-based interaction Value of information Frameworks |
topic |
Ciencias Informáticas Informática context modeling information retrieval Information Search and Retrieval Web-based interaction Value of information Frameworks |
dc.description.none.fl_txt_mv |
Successful access to information sources on the Web depends on effective methods for identifying the needs of a user and making relevant information resources available when needed. This paper formulates a theoretical framework for the study of context-drivenWeb search and proposes new methods for learning query terms based on the user task. These methods use an incrementally-retrieved, topic-dependent selection of Web documents for term-weight reinforcement reflecting the aptness of the terms in describing and discriminating the topic of the user context. Based on this framework, we propose an incremental search algorithm for information retrieval agents that has the potential to improve significantly over the traditional IR techniques. The new algorithm learns new descriptors by searching for terms that tend to occur often in relevant documents, and learns good discriminators by identifying terms that tend to occur only in the context of the given topic. We discuss the technical challenges posed by this new framework, outline our agent system architecture, and present an evaluation of the proposed techniques. Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Successful access to information sources on the Web depends on effective methods for identifying the needs of a user and making relevant information resources available when needed. This paper formulates a theoretical framework for the study of context-drivenWeb search and proposes new methods for learning query terms based on the user task. These methods use an incrementally-retrieved, topic-dependent selection of Web documents for term-weight reinforcement reflecting the aptness of the terms in describing and discriminating the topic of the user context. Based on this framework, we propose an incremental search algorithm for information retrieval agents that has the potential to improve significantly over the traditional IR techniques. The new algorithm learns new descriptors by searching for terms that tend to occur often in relevant documents, and learns good discriminators by identifying terms that tend to occur only in the context of the given topic. We discuss the technical challenges posed by this new framework, outline our agent system architecture, and present an evaluation of the proposed techniques. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23581 |
url |
http://sedici.unlp.edu.ar/handle/10915/23581 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 1608-1620 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615814383140864 |
score |
13.070432 |