Crowding under diverse distance criteria for niche formation in multimodal optimization
- Autores
- Fernandez, Natalia; Alfonso, Hugo; Gallard, Raúl Hector
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Niche formation allows evolutionary algorithms to be used when the location and maintenance of multiple solutions appertaining to diverse areas of the phenotypic space is required. Consequently the application field can be extended to multiobjective optimization, simulation of complex systems and multimodal function optimization. In this later case a conventional evolutionary algorithm tends to group the final population around the fittest individual. Thus, other areas of interest in the search process are lost. Niching methods permits the maintenance of solutions located around these areas of interest. This contribution briefly describe problems preventing niche formation in conventional genetic algorithms, a crowding method for niche formation and analysis of results when optimizing two multimodal functions.
Facultad de Informática - Materia
-
Ciencias Informáticas
genetic algorithms; genetic diversity; genetic drift; niche formation; crowding
Informática
Algoritmos evolutivos
Optimización
Métodos heurísticos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9399
Ver los metadatos del registro completo
id |
SEDICI_a31b286599cc0eb7f58d362cb79d9d08 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9399 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Crowding under diverse distance criteria for niche formation in multimodal optimizationFernandez, NataliaAlfonso, HugoGallard, Raúl HectorCiencias Informáticasgenetic algorithms; genetic diversity; genetic drift; niche formation; crowdingInformáticaAlgoritmos evolutivosOptimizaciónMétodos heurísticosNiche formation allows evolutionary algorithms to be used when the location and maintenance of multiple solutions appertaining to diverse areas of the phenotypic space is required. Consequently the application field can be extended to multiobjective optimization, simulation of complex systems and multimodal function optimization. In this later case a conventional evolutionary algorithm tends to group the final population around the fittest individual. Thus, other areas of interest in the search process are lost. Niching methods permits the maintenance of solutions located around these areas of interest. This contribution briefly describe problems preventing niche formation in conventional genetic algorithms, a crowding method for niche formation and analysis of results when optimizing two multimodal functions.Facultad de Informática2000info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/9399enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/pap5.pdfinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:50:40Zoai:sedici.unlp.edu.ar:10915/9399Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:50:40.261SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Crowding under diverse distance criteria for niche formation in multimodal optimization |
title |
Crowding under diverse distance criteria for niche formation in multimodal optimization |
spellingShingle |
Crowding under diverse distance criteria for niche formation in multimodal optimization Fernandez, Natalia Ciencias Informáticas genetic algorithms; genetic diversity; genetic drift; niche formation; crowding Informática Algoritmos evolutivos Optimización Métodos heurísticos |
title_short |
Crowding under diverse distance criteria for niche formation in multimodal optimization |
title_full |
Crowding under diverse distance criteria for niche formation in multimodal optimization |
title_fullStr |
Crowding under diverse distance criteria for niche formation in multimodal optimization |
title_full_unstemmed |
Crowding under diverse distance criteria for niche formation in multimodal optimization |
title_sort |
Crowding under diverse distance criteria for niche formation in multimodal optimization |
dc.creator.none.fl_str_mv |
Fernandez, Natalia Alfonso, Hugo Gallard, Raúl Hector |
author |
Fernandez, Natalia |
author_facet |
Fernandez, Natalia Alfonso, Hugo Gallard, Raúl Hector |
author_role |
author |
author2 |
Alfonso, Hugo Gallard, Raúl Hector |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas genetic algorithms; genetic diversity; genetic drift; niche formation; crowding Informática Algoritmos evolutivos Optimización Métodos heurísticos |
topic |
Ciencias Informáticas genetic algorithms; genetic diversity; genetic drift; niche formation; crowding Informática Algoritmos evolutivos Optimización Métodos heurísticos |
dc.description.none.fl_txt_mv |
Niche formation allows evolutionary algorithms to be used when the location and maintenance of multiple solutions appertaining to diverse areas of the phenotypic space is required. Consequently the application field can be extended to multiobjective optimization, simulation of complex systems and multimodal function optimization. In this later case a conventional evolutionary algorithm tends to group the final population around the fittest individual. Thus, other areas of interest in the search process are lost. Niching methods permits the maintenance of solutions located around these areas of interest. This contribution briefly describe problems preventing niche formation in conventional genetic algorithms, a crowding method for niche formation and analysis of results when optimizing two multimodal functions. Facultad de Informática |
description |
Niche formation allows evolutionary algorithms to be used when the location and maintenance of multiple solutions appertaining to diverse areas of the phenotypic space is required. Consequently the application field can be extended to multiobjective optimization, simulation of complex systems and multimodal function optimization. In this later case a conventional evolutionary algorithm tends to group the final population around the fittest individual. Thus, other areas of interest in the search process are lost. Niching methods permits the maintenance of solutions located around these areas of interest. This contribution briefly describe problems preventing niche formation in conventional genetic algorithms, a crowding method for niche formation and analysis of results when optimizing two multimodal functions. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9399 |
url |
http://sedici.unlp.edu.ar/handle/10915/9399 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/pap5.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615757444415488 |
score |
13.070432 |