Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: a simulation study of the two-dimensional Ising case
- Autores
- Trobo, Marta Liliana; Albano, Ezequiel Vicente; Binder, Kurt
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Heterogeneous nucleation is studied by Monte Carlo simulations and phenomenological theory, using the two-dimensional lattice gas model with suitable boundary fields. A chemical inhomogeneity of length b at one boundary favors the liquid phase, while elsewhere the vapor is favored. Switching on the bulk field Hb favoring the liquid, nucleation and growth of the liquid phase starting from the region of the chemical inhomogeneity are analyzed. Three regimes occur: for small fields, Hb < Hbcrit, the critical droplet radius is so large that a critical droplet having the contact angle θc required by Young's equation in the region of the chemical inhomogeneity does not yet "fit" there since the baseline length of the circle-cut sphere droplet would exceed b. For Hbcrit < Hb < Hb*, such droplets fit inside the inhomogeneity and are indeed found in simulations with large enough observation times, but these droplets remain pinned to the chemical inhomogeneity when their baseline has grown to the length b. Assuming that these pinned droplets have a circle cut shape and effective contact angles θeff in the regime θc < θeff < π/2, the density excess due to these droplets can be predicted and is found to be in reasonable agreement with the simulation results. On general grounds, one can predict that the effective contact angle θeff and the excess density of the droplets, scaled by b, are functions of the product bHb but do not depend on both variables separately. Since the free energy barrier for the "depinning" of the droplet (i.e., growth of θeff to π - θc) vanishes when θeff approaches π/2, in practice only angles θeff up to about θeffmax ≃ 70 were observed. For larger fields (Hb > Hb*), the droplets nucleated at the chemical inhomogeneity grow to the full system size. While the relaxation time for the growth scales as τG ∝ Hb-1, the nucleation time τN scales as ln N ∝ Hb-1. However, the prefactor in the latter relation, as evaluated for our simulations results, is not in accord with an extension of the Volmer-Turnbull theory to two-dimensions, when the theoretical contact angle θc is used.
Facultad de Ciencias Exactas
Facultad de Ingeniería
Instituto de Física de Líquidos y Sistemas Biológicos - Materia
-
Ciencias Exactas
Física
Nucleation
Droplet
Pinned - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/102459
Ver los metadatos del registro completo
id |
SEDICI_a2e6c87e116ac994c5e6569c58709b30 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/102459 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: a simulation study of the two-dimensional Ising caseTrobo, Marta LilianaAlbano, Ezequiel VicenteBinder, KurtCiencias ExactasFísicaNucleationDropletPinnedHeterogeneous nucleation is studied by Monte Carlo simulations and phenomenological theory, using the two-dimensional lattice gas model with suitable boundary fields. A chemical inhomogeneity of length b at one boundary favors the liquid phase, while elsewhere the vapor is favored. Switching on the bulk field H<sub>b</sub> favoring the liquid, nucleation and growth of the liquid phase starting from the region of the chemical inhomogeneity are analyzed. Three regimes occur: for small fields, H<sub>b</sub> < H<sub>b</sub><sup>crit</sup>, the critical droplet radius is so large that a critical droplet having the contact angle θ<sub>c</sub> required by Young's equation in the region of the chemical inhomogeneity does not yet "fit" there since the baseline length of the circle-cut sphere droplet would exceed b. For H<sub>b</sub><sup>crit</sup> < H<sub>b</sub> < H<sub>b</sub>*, such droplets fit inside the inhomogeneity and are indeed found in simulations with large enough observation times, but these droplets remain pinned to the chemical inhomogeneity when their baseline has grown to the length b. Assuming that these pinned droplets have a circle cut shape and effective contact angles θ<sub>eff</sub> in the regime θ<sub>c</sub> < θ<sub>eff</sub> < π/2, the density excess due to these droplets can be predicted and is found to be in reasonable agreement with the simulation results. On general grounds, one can predict that the effective contact angle θ<sub>eff</sub> and the excess density of the droplets, scaled by b, are functions of the product bH<sub>b</sub> but do not depend on both variables separately. Since the free energy barrier for the "depinning" of the droplet (i.e., growth of θ<sub>eff</sub> to π - θ<sub>c</sub>) vanishes when θ<sub>eff</sub> approaches π/2, in practice only angles θ<sub>eff</sub> up to about θ<sub>eff</sub><sup>max</sup> ≃ 70 were observed. For larger fields (H<sub>b</sub> > H<sub>b</sub>*), the droplets nucleated at the chemical inhomogeneity grow to the full system size. While the relaxation time for the growth scales as τ<sub>G</sub> ∝ H<sub>b</sub><sup>-1</sup>, the nucleation time τ<sub>N</sub> scales as ln <sub>N</sub> ∝ H<sub>b</sub><sup>-1</sup>. However, the prefactor in the latter relation, as evaluated for our simulations results, is not in accord with an extension of the Volmer-Turnbull theory to two-dimensions, when the theoretical contact angle θ<sub>c</sub> is used.Facultad de Ciencias ExactasFacultad de IngenieríaInstituto de Física de Líquidos y Sistemas Biológicos2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/102459enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/89250info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5016612info:eu-repo/semantics/altIdentifier/issn/0021-9606info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5016612info:eu-repo/semantics/altIdentifier/hdl/11336/89250info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:52:46Zoai:sedici.unlp.edu.ar:10915/102459Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:52:47.256SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: a simulation study of the two-dimensional Ising case |
title |
Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: a simulation study of the two-dimensional Ising case |
spellingShingle |
Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: a simulation study of the two-dimensional Ising case Trobo, Marta Liliana Ciencias Exactas Física Nucleation Droplet Pinned |
title_short |
Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: a simulation study of the two-dimensional Ising case |
title_full |
Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: a simulation study of the two-dimensional Ising case |
title_fullStr |
Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: a simulation study of the two-dimensional Ising case |
title_full_unstemmed |
Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: a simulation study of the two-dimensional Ising case |
title_sort |
Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: a simulation study of the two-dimensional Ising case |
dc.creator.none.fl_str_mv |
Trobo, Marta Liliana Albano, Ezequiel Vicente Binder, Kurt |
author |
Trobo, Marta Liliana |
author_facet |
Trobo, Marta Liliana Albano, Ezequiel Vicente Binder, Kurt |
author_role |
author |
author2 |
Albano, Ezequiel Vicente Binder, Kurt |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física Nucleation Droplet Pinned |
topic |
Ciencias Exactas Física Nucleation Droplet Pinned |
dc.description.none.fl_txt_mv |
Heterogeneous nucleation is studied by Monte Carlo simulations and phenomenological theory, using the two-dimensional lattice gas model with suitable boundary fields. A chemical inhomogeneity of length b at one boundary favors the liquid phase, while elsewhere the vapor is favored. Switching on the bulk field H<sub>b</sub> favoring the liquid, nucleation and growth of the liquid phase starting from the region of the chemical inhomogeneity are analyzed. Three regimes occur: for small fields, H<sub>b</sub> < H<sub>b</sub><sup>crit</sup>, the critical droplet radius is so large that a critical droplet having the contact angle θ<sub>c</sub> required by Young's equation in the region of the chemical inhomogeneity does not yet "fit" there since the baseline length of the circle-cut sphere droplet would exceed b. For H<sub>b</sub><sup>crit</sup> < H<sub>b</sub> < H<sub>b</sub>*, such droplets fit inside the inhomogeneity and are indeed found in simulations with large enough observation times, but these droplets remain pinned to the chemical inhomogeneity when their baseline has grown to the length b. Assuming that these pinned droplets have a circle cut shape and effective contact angles θ<sub>eff</sub> in the regime θ<sub>c</sub> < θ<sub>eff</sub> < π/2, the density excess due to these droplets can be predicted and is found to be in reasonable agreement with the simulation results. On general grounds, one can predict that the effective contact angle θ<sub>eff</sub> and the excess density of the droplets, scaled by b, are functions of the product bH<sub>b</sub> but do not depend on both variables separately. Since the free energy barrier for the "depinning" of the droplet (i.e., growth of θ<sub>eff</sub> to π - θ<sub>c</sub>) vanishes when θ<sub>eff</sub> approaches π/2, in practice only angles θ<sub>eff</sub> up to about θ<sub>eff</sub><sup>max</sup> ≃ 70 were observed. For larger fields (H<sub>b</sub> > H<sub>b</sub>*), the droplets nucleated at the chemical inhomogeneity grow to the full system size. While the relaxation time for the growth scales as τ<sub>G</sub> ∝ H<sub>b</sub><sup>-1</sup>, the nucleation time τ<sub>N</sub> scales as ln <sub>N</sub> ∝ H<sub>b</sub><sup>-1</sup>. However, the prefactor in the latter relation, as evaluated for our simulations results, is not in accord with an extension of the Volmer-Turnbull theory to two-dimensions, when the theoretical contact angle θ<sub>c</sub> is used. Facultad de Ciencias Exactas Facultad de Ingeniería Instituto de Física de Líquidos y Sistemas Biológicos |
description |
Heterogeneous nucleation is studied by Monte Carlo simulations and phenomenological theory, using the two-dimensional lattice gas model with suitable boundary fields. A chemical inhomogeneity of length b at one boundary favors the liquid phase, while elsewhere the vapor is favored. Switching on the bulk field H<sub>b</sub> favoring the liquid, nucleation and growth of the liquid phase starting from the region of the chemical inhomogeneity are analyzed. Three regimes occur: for small fields, H<sub>b</sub> < H<sub>b</sub><sup>crit</sup>, the critical droplet radius is so large that a critical droplet having the contact angle θ<sub>c</sub> required by Young's equation in the region of the chemical inhomogeneity does not yet "fit" there since the baseline length of the circle-cut sphere droplet would exceed b. For H<sub>b</sub><sup>crit</sup> < H<sub>b</sub> < H<sub>b</sub>*, such droplets fit inside the inhomogeneity and are indeed found in simulations with large enough observation times, but these droplets remain pinned to the chemical inhomogeneity when their baseline has grown to the length b. Assuming that these pinned droplets have a circle cut shape and effective contact angles θ<sub>eff</sub> in the regime θ<sub>c</sub> < θ<sub>eff</sub> < π/2, the density excess due to these droplets can be predicted and is found to be in reasonable agreement with the simulation results. On general grounds, one can predict that the effective contact angle θ<sub>eff</sub> and the excess density of the droplets, scaled by b, are functions of the product bH<sub>b</sub> but do not depend on both variables separately. Since the free energy barrier for the "depinning" of the droplet (i.e., growth of θ<sub>eff</sub> to π - θ<sub>c</sub>) vanishes when θ<sub>eff</sub> approaches π/2, in practice only angles θ<sub>eff</sub> up to about θ<sub>eff</sub><sup>max</sup> ≃ 70 were observed. For larger fields (H<sub>b</sub> > H<sub>b</sub>*), the droplets nucleated at the chemical inhomogeneity grow to the full system size. While the relaxation time for the growth scales as τ<sub>G</sub> ∝ H<sub>b</sub><sup>-1</sup>, the nucleation time τ<sub>N</sub> scales as ln <sub>N</sub> ∝ H<sub>b</sub><sup>-1</sup>. However, the prefactor in the latter relation, as evaluated for our simulations results, is not in accord with an extension of the Volmer-Turnbull theory to two-dimensions, when the theoretical contact angle θ<sub>c</sub> is used. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/102459 |
url |
http://sedici.unlp.edu.ar/handle/10915/102459 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/89250 info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5016612 info:eu-repo/semantics/altIdentifier/issn/0021-9606 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.5016612 info:eu-repo/semantics/altIdentifier/hdl/11336/89250 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260410356465664 |
score |
13.13397 |