Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles
- Autores
- Krut, A.; Argüelles, Carlos Raúl; Chavanis, P. H.; Rueda, J. A.; Ruffini, R.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Galaxies show different halo scaling relations such as the radial acceleration relation, the mass discrepancy acceleration relation (MDAR), or the dark matter (DM) surface density relation. At difference with traditional studies using phenomenological ΛCDM halos, we analyze the above relations assuming that DM halos are formed through a maximum entropy principle (MEP) in which the fermionic (quantum) nature of the DM particles is dully accounted for. For the first time, a competitive DM model based on first physical principles, such as (quantum) statistical-mechanics and thermodynamics, is tested against a large data set of galactic observables. In particular, we compare the fermionic DM model with empirical DM profiles: the Navarro–Frenk–White (NFW) model, a generalized NFW model accounting for baryonic feedback, the Einasto model, and the Burkert model. For this task, we use a large sample of 120 galaxies taken from the Spitzer Photometry and Accurate Rotation Curves data set, from which we infer the DM content to compare with the models. We find that the radial acceleration relation and MDAR are well explained by all the models with comparable accuracy, while the fits to the individual rotation curves, in contrast, show that cored DM halos are statistically preferred with respect to the cuspy NFW profile. However, very different physical principles justify the flat inner-halo slope in the most-favored DM profiles: while generalized NFW or Einasto models rely on complex baryonic feedback processes, the MEP scenario involves a quasi-thermodynamic equilibrium of the DM particles.
Instituto de Astrofísica de La Plata - Materia
-
Ciencias Astronómicas
Galaxy dynamics
Galaxy structure
Galaxy physics
Dark matter
Galaxy dark matter halos - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/152518
Ver los metadatos del registro completo
id |
SEDICI_9e0d4be1406a7dc55b8f8c7d30fa6014 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/152518 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profilesKrut, A.Argüelles, Carlos RaúlChavanis, P. H.Rueda, J. A.Ruffini, R.Ciencias AstronómicasGalaxy dynamicsGalaxy structureGalaxy physicsDark matterGalaxy dark matter halosGalaxies show different halo scaling relations such as the radial acceleration relation, the mass discrepancy acceleration relation (MDAR), or the dark matter (DM) surface density relation. At difference with traditional studies using phenomenological ΛCDM halos, we analyze the above relations assuming that DM halos are formed through a maximum entropy principle (MEP) in which the fermionic (quantum) nature of the DM particles is dully accounted for. For the first time, a competitive DM model based on first physical principles, such as (quantum) statistical-mechanics and thermodynamics, is tested against a large data set of galactic observables. In particular, we compare the fermionic DM model with empirical DM profiles: the Navarro–Frenk–White (NFW) model, a generalized NFW model accounting for baryonic feedback, the Einasto model, and the Burkert model. For this task, we use a large sample of 120 galaxies taken from the Spitzer Photometry and Accurate Rotation Curves data set, from which we infer the DM content to compare with the models. We find that the radial acceleration relation and MDAR are well explained by all the models with comparable accuracy, while the fits to the individual rotation curves, in contrast, show that cored DM halos are statistically preferred with respect to the cuspy NFW profile. However, very different physical principles justify the flat inner-halo slope in the most-favored DM profiles: while generalized NFW or Einasto models rely on complex baryonic feedback processes, the MEP scenario involves a quasi-thermodynamic equilibrium of the DM particles.Instituto de Astrofísica de La Plata2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/152518enginfo:eu-repo/semantics/altIdentifier/issn/1538-4357info:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/acb8bdinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:11:29Zoai:sedici.unlp.edu.ar:10915/152518Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:11:30.09SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles |
title |
Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles |
spellingShingle |
Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles Krut, A. Ciencias Astronómicas Galaxy dynamics Galaxy structure Galaxy physics Dark matter Galaxy dark matter halos |
title_short |
Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles |
title_full |
Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles |
title_fullStr |
Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles |
title_full_unstemmed |
Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles |
title_sort |
Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles |
dc.creator.none.fl_str_mv |
Krut, A. Argüelles, Carlos Raúl Chavanis, P. H. Rueda, J. A. Ruffini, R. |
author |
Krut, A. |
author_facet |
Krut, A. Argüelles, Carlos Raúl Chavanis, P. H. Rueda, J. A. Ruffini, R. |
author_role |
author |
author2 |
Argüelles, Carlos Raúl Chavanis, P. H. Rueda, J. A. Ruffini, R. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Galaxy dynamics Galaxy structure Galaxy physics Dark matter Galaxy dark matter halos |
topic |
Ciencias Astronómicas Galaxy dynamics Galaxy structure Galaxy physics Dark matter Galaxy dark matter halos |
dc.description.none.fl_txt_mv |
Galaxies show different halo scaling relations such as the radial acceleration relation, the mass discrepancy acceleration relation (MDAR), or the dark matter (DM) surface density relation. At difference with traditional studies using phenomenological ΛCDM halos, we analyze the above relations assuming that DM halos are formed through a maximum entropy principle (MEP) in which the fermionic (quantum) nature of the DM particles is dully accounted for. For the first time, a competitive DM model based on first physical principles, such as (quantum) statistical-mechanics and thermodynamics, is tested against a large data set of galactic observables. In particular, we compare the fermionic DM model with empirical DM profiles: the Navarro–Frenk–White (NFW) model, a generalized NFW model accounting for baryonic feedback, the Einasto model, and the Burkert model. For this task, we use a large sample of 120 galaxies taken from the Spitzer Photometry and Accurate Rotation Curves data set, from which we infer the DM content to compare with the models. We find that the radial acceleration relation and MDAR are well explained by all the models with comparable accuracy, while the fits to the individual rotation curves, in contrast, show that cored DM halos are statistically preferred with respect to the cuspy NFW profile. However, very different physical principles justify the flat inner-halo slope in the most-favored DM profiles: while generalized NFW or Einasto models rely on complex baryonic feedback processes, the MEP scenario involves a quasi-thermodynamic equilibrium of the DM particles. Instituto de Astrofísica de La Plata |
description |
Galaxies show different halo scaling relations such as the radial acceleration relation, the mass discrepancy acceleration relation (MDAR), or the dark matter (DM) surface density relation. At difference with traditional studies using phenomenological ΛCDM halos, we analyze the above relations assuming that DM halos are formed through a maximum entropy principle (MEP) in which the fermionic (quantum) nature of the DM particles is dully accounted for. For the first time, a competitive DM model based on first physical principles, such as (quantum) statistical-mechanics and thermodynamics, is tested against a large data set of galactic observables. In particular, we compare the fermionic DM model with empirical DM profiles: the Navarro–Frenk–White (NFW) model, a generalized NFW model accounting for baryonic feedback, the Einasto model, and the Burkert model. For this task, we use a large sample of 120 galaxies taken from the Spitzer Photometry and Accurate Rotation Curves data set, from which we infer the DM content to compare with the models. We find that the radial acceleration relation and MDAR are well explained by all the models with comparable accuracy, while the fits to the individual rotation curves, in contrast, show that cored DM halos are statistically preferred with respect to the cuspy NFW profile. However, very different physical principles justify the flat inner-halo slope in the most-favored DM profiles: while generalized NFW or Einasto models rely on complex baryonic feedback processes, the MEP scenario involves a quasi-thermodynamic equilibrium of the DM particles. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/152518 |
url |
http://sedici.unlp.edu.ar/handle/10915/152518 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1538-4357 info:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/acb8bd |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260618922426368 |
score |
13.13397 |