Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles

Autores
Krut, A.; Argüelles, Carlos Raúl; Chavanis, P. H.; Rueda, J. A.; Ruffini, R.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Galaxies show different halo scaling relations such as the radial acceleration relation, the mass discrepancy acceleration relation (MDAR), or the dark matter (DM) surface density relation. At difference with traditional studies using phenomenological ΛCDM halos, we analyze the above relations assuming that DM halos are formed through a maximum entropy principle (MEP) in which the fermionic (quantum) nature of the DM particles is dully accounted for. For the first time, a competitive DM model based on first physical principles, such as (quantum) statistical-mechanics and thermodynamics, is tested against a large data set of galactic observables. In particular, we compare the fermionic DM model with empirical DM profiles: the Navarro–Frenk–White (NFW) model, a generalized NFW model accounting for baryonic feedback, the Einasto model, and the Burkert model. For this task, we use a large sample of 120 galaxies taken from the Spitzer Photometry and Accurate Rotation Curves data set, from which we infer the DM content to compare with the models. We find that the radial acceleration relation and MDAR are well explained by all the models with comparable accuracy, while the fits to the individual rotation curves, in contrast, show that cored DM halos are statistically preferred with respect to the cuspy NFW profile. However, very different physical principles justify the flat inner-halo slope in the most-favored DM profiles: while generalized NFW or Einasto models rely on complex baryonic feedback processes, the MEP scenario involves a quasi-thermodynamic equilibrium of the DM particles.
Instituto de Astrofísica de La Plata
Materia
Ciencias Astronómicas
Galaxy dynamics
Galaxy structure
Galaxy physics
Dark matter
Galaxy dark matter halos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/152518

id SEDICI_9e0d4be1406a7dc55b8f8c7d30fa6014
oai_identifier_str oai:sedici.unlp.edu.ar:10915/152518
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profilesKrut, A.Argüelles, Carlos RaúlChavanis, P. H.Rueda, J. A.Ruffini, R.Ciencias AstronómicasGalaxy dynamicsGalaxy structureGalaxy physicsDark matterGalaxy dark matter halosGalaxies show different halo scaling relations such as the radial acceleration relation, the mass discrepancy acceleration relation (MDAR), or the dark matter (DM) surface density relation. At difference with traditional studies using phenomenological ΛCDM halos, we analyze the above relations assuming that DM halos are formed through a maximum entropy principle (MEP) in which the fermionic (quantum) nature of the DM particles is dully accounted for. For the first time, a competitive DM model based on first physical principles, such as (quantum) statistical-mechanics and thermodynamics, is tested against a large data set of galactic observables. In particular, we compare the fermionic DM model with empirical DM profiles: the Navarro–Frenk–White (NFW) model, a generalized NFW model accounting for baryonic feedback, the Einasto model, and the Burkert model. For this task, we use a large sample of 120 galaxies taken from the Spitzer Photometry and Accurate Rotation Curves data set, from which we infer the DM content to compare with the models. We find that the radial acceleration relation and MDAR are well explained by all the models with comparable accuracy, while the fits to the individual rotation curves, in contrast, show that cored DM halos are statistically preferred with respect to the cuspy NFW profile. However, very different physical principles justify the flat inner-halo slope in the most-favored DM profiles: while generalized NFW or Einasto models rely on complex baryonic feedback processes, the MEP scenario involves a quasi-thermodynamic equilibrium of the DM particles.Instituto de Astrofísica de La Plata2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/152518enginfo:eu-repo/semantics/altIdentifier/issn/1538-4357info:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/acb8bdinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:11:29Zoai:sedici.unlp.edu.ar:10915/152518Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:11:30.09SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles
title Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles
spellingShingle Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles
Krut, A.
Ciencias Astronómicas
Galaxy dynamics
Galaxy structure
Galaxy physics
Dark matter
Galaxy dark matter halos
title_short Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles
title_full Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles
title_fullStr Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles
title_full_unstemmed Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles
title_sort Galaxy rotation curves and universal scaling relations: comparison between phenomenological and fermionic dark matter profiles
dc.creator.none.fl_str_mv Krut, A.
Argüelles, Carlos Raúl
Chavanis, P. H.
Rueda, J. A.
Ruffini, R.
author Krut, A.
author_facet Krut, A.
Argüelles, Carlos Raúl
Chavanis, P. H.
Rueda, J. A.
Ruffini, R.
author_role author
author2 Argüelles, Carlos Raúl
Chavanis, P. H.
Rueda, J. A.
Ruffini, R.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Galaxy dynamics
Galaxy structure
Galaxy physics
Dark matter
Galaxy dark matter halos
topic Ciencias Astronómicas
Galaxy dynamics
Galaxy structure
Galaxy physics
Dark matter
Galaxy dark matter halos
dc.description.none.fl_txt_mv Galaxies show different halo scaling relations such as the radial acceleration relation, the mass discrepancy acceleration relation (MDAR), or the dark matter (DM) surface density relation. At difference with traditional studies using phenomenological ΛCDM halos, we analyze the above relations assuming that DM halos are formed through a maximum entropy principle (MEP) in which the fermionic (quantum) nature of the DM particles is dully accounted for. For the first time, a competitive DM model based on first physical principles, such as (quantum) statistical-mechanics and thermodynamics, is tested against a large data set of galactic observables. In particular, we compare the fermionic DM model with empirical DM profiles: the Navarro–Frenk–White (NFW) model, a generalized NFW model accounting for baryonic feedback, the Einasto model, and the Burkert model. For this task, we use a large sample of 120 galaxies taken from the Spitzer Photometry and Accurate Rotation Curves data set, from which we infer the DM content to compare with the models. We find that the radial acceleration relation and MDAR are well explained by all the models with comparable accuracy, while the fits to the individual rotation curves, in contrast, show that cored DM halos are statistically preferred with respect to the cuspy NFW profile. However, very different physical principles justify the flat inner-halo slope in the most-favored DM profiles: while generalized NFW or Einasto models rely on complex baryonic feedback processes, the MEP scenario involves a quasi-thermodynamic equilibrium of the DM particles.
Instituto de Astrofísica de La Plata
description Galaxies show different halo scaling relations such as the radial acceleration relation, the mass discrepancy acceleration relation (MDAR), or the dark matter (DM) surface density relation. At difference with traditional studies using phenomenological ΛCDM halos, we analyze the above relations assuming that DM halos are formed through a maximum entropy principle (MEP) in which the fermionic (quantum) nature of the DM particles is dully accounted for. For the first time, a competitive DM model based on first physical principles, such as (quantum) statistical-mechanics and thermodynamics, is tested against a large data set of galactic observables. In particular, we compare the fermionic DM model with empirical DM profiles: the Navarro–Frenk–White (NFW) model, a generalized NFW model accounting for baryonic feedback, the Einasto model, and the Burkert model. For this task, we use a large sample of 120 galaxies taken from the Spitzer Photometry and Accurate Rotation Curves data set, from which we infer the DM content to compare with the models. We find that the radial acceleration relation and MDAR are well explained by all the models with comparable accuracy, while the fits to the individual rotation curves, in contrast, show that cored DM halos are statistically preferred with respect to the cuspy NFW profile. However, very different physical principles justify the flat inner-halo slope in the most-favored DM profiles: while generalized NFW or Einasto models rely on complex baryonic feedback processes, the MEP scenario involves a quasi-thermodynamic equilibrium of the DM particles.
publishDate 2023
dc.date.none.fl_str_mv 2023-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/152518
url http://sedici.unlp.edu.ar/handle/10915/152518
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1538-4357
info:eu-repo/semantics/altIdentifier/doi/10.3847/1538-4357/acb8bd
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260618922426368
score 13.13397