LHC sensitivity to singly charged scalars decaying into electrons and muons

Autores
Alcaide, Julien; Mileo, Nicolás Ismael
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Current LHC searches for nonsupersymmetric singly charged scalars, based on two-Higgs-doublet models, in general, focus the analysis in third-generation fermions in the final state. However, singly charged scalars in alternative extensions of the scalar sector involve Yukawa couplings not proportional to the mass of the fermions. Assuming the scalar decays into electrons and muons, it can manifest cleaner experimental signatures. In this paper, we suggest that a singly charged scalar singlet, with electroweak production, can start to be probed in the near future with dedicated search strategies. Depending on the strength of the Yukawa couplings, two independent scenarios are considered: direct pair production (small couplings) and single production via a virtual neutrino exchange (large couplings). We show that, up to a mass as large as 500 GeV, most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC. Our results also apply to other frameworks, provided the singly charged scalar exhibits similar production patterns and dominant decay modes.
Instituto de Física La Plata
Materia
Física
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/133184

id SEDICI_9d9875fc452f2b69a9e1500bfb5e69cf
oai_identifier_str oai:sedici.unlp.edu.ar:10915/133184
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling LHC sensitivity to singly charged scalars decaying into electrons and muonsAlcaide, JulienMileo, Nicolás IsmaelFísicaCurrent LHC searches for nonsupersymmetric singly charged scalars, based on two-Higgs-doublet models, in general, focus the analysis in third-generation fermions in the final state. However, singly charged scalars in alternative extensions of the scalar sector involve Yukawa couplings not proportional to the mass of the fermions. Assuming the scalar decays into electrons and muons, it can manifest cleaner experimental signatures. In this paper, we suggest that a singly charged scalar singlet, with electroweak production, can start to be probed in the near future with dedicated search strategies. Depending on the strength of the Yukawa couplings, two independent scenarios are considered: direct pair production (small couplings) and single production via a virtual neutrino exchange (large couplings). We show that, up to a mass as large as 500 GeV, most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC. Our results also apply to other frameworks, provided the singly charged scalar exhibits similar production patterns and dominant decay modes.Instituto de Física La Plata2020-10-23info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/133184enginfo:eu-repo/semantics/altIdentifier/issn/2470-0010info:eu-repo/semantics/altIdentifier/issn/2470-0029info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevd.102.075030info:eu-repo/semantics/altIdentifier/arxiv/1906.08685info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:47Zoai:sedici.unlp.edu.ar:10915/133184Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:47.301SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv LHC sensitivity to singly charged scalars decaying into electrons and muons
title LHC sensitivity to singly charged scalars decaying into electrons and muons
spellingShingle LHC sensitivity to singly charged scalars decaying into electrons and muons
Alcaide, Julien
Física
title_short LHC sensitivity to singly charged scalars decaying into electrons and muons
title_full LHC sensitivity to singly charged scalars decaying into electrons and muons
title_fullStr LHC sensitivity to singly charged scalars decaying into electrons and muons
title_full_unstemmed LHC sensitivity to singly charged scalars decaying into electrons and muons
title_sort LHC sensitivity to singly charged scalars decaying into electrons and muons
dc.creator.none.fl_str_mv Alcaide, Julien
Mileo, Nicolás Ismael
author Alcaide, Julien
author_facet Alcaide, Julien
Mileo, Nicolás Ismael
author_role author
author2 Mileo, Nicolás Ismael
author2_role author
dc.subject.none.fl_str_mv Física
topic Física
dc.description.none.fl_txt_mv Current LHC searches for nonsupersymmetric singly charged scalars, based on two-Higgs-doublet models, in general, focus the analysis in third-generation fermions in the final state. However, singly charged scalars in alternative extensions of the scalar sector involve Yukawa couplings not proportional to the mass of the fermions. Assuming the scalar decays into electrons and muons, it can manifest cleaner experimental signatures. In this paper, we suggest that a singly charged scalar singlet, with electroweak production, can start to be probed in the near future with dedicated search strategies. Depending on the strength of the Yukawa couplings, two independent scenarios are considered: direct pair production (small couplings) and single production via a virtual neutrino exchange (large couplings). We show that, up to a mass as large as 500 GeV, most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC. Our results also apply to other frameworks, provided the singly charged scalar exhibits similar production patterns and dominant decay modes.
Instituto de Física La Plata
description Current LHC searches for nonsupersymmetric singly charged scalars, based on two-Higgs-doublet models, in general, focus the analysis in third-generation fermions in the final state. However, singly charged scalars in alternative extensions of the scalar sector involve Yukawa couplings not proportional to the mass of the fermions. Assuming the scalar decays into electrons and muons, it can manifest cleaner experimental signatures. In this paper, we suggest that a singly charged scalar singlet, with electroweak production, can start to be probed in the near future with dedicated search strategies. Depending on the strength of the Yukawa couplings, two independent scenarios are considered: direct pair production (small couplings) and single production via a virtual neutrino exchange (large couplings). We show that, up to a mass as large as 500 GeV, most of the parameter space could be excluded at the 95% C.L. in a high-luminosity phase of the LHC. Our results also apply to other frameworks, provided the singly charged scalar exhibits similar production patterns and dominant decay modes.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-23
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/133184
url http://sedici.unlp.edu.ar/handle/10915/133184
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2470-0010
info:eu-repo/semantics/altIdentifier/issn/2470-0029
info:eu-repo/semantics/altIdentifier/doi/10.1103/physrevd.102.075030
info:eu-repo/semantics/altIdentifier/arxiv/1906.08685
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616197231869952
score 13.070432